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I. INTRODUCTION 

Background 

Anaerobic digestion has been used successfully for stabilizing wastewater sludges for 

over 70 years. Because of the emphasis on energy conservation and recovery and the 

desirability of obtaining beneficial use of wastewater sludge, anaerobic digestion has been and 

will continue to be the dominant sludge stabilization process. The primary objectives of 

anaerobic digestion are (1) reduce pathogens, (2) eliminate offensive odors, and (3) reduce 

organic matter and the potential for putrefaction. 

New federal regulations on wastewater sludge management were implemented in 1993 

and will have an impact on virtually every biosolids disposal method, including application to 

agricultural land. The new regulations have restricted land use of sludge based on pathogen 

destruction criteria. According to the new standards for the disposal of sewage sludge [6], all 

Class A sludge must meet one of the following criteria at the time it is sold, given away, or 

used. 

Either 

• A fecal coliform density less than 1,000 Most Probable Number per gram of total 

solids (1,000 MPN/g IS). 

or 

• A Salmonella spp. Density less than 3 Most Probable Number per 4 grams of total 

solids (3 MPN/4g TS). 
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In general, the fecal coliform density of domestic primary wastewater sludge is in a 

range from 10^ to lO' MPN/g TS. The conventional anaerobic digestion process can achieve 

some pathogen destruction, as shown in Table 1 [85], The results in Table 1 show that 

the digested sludge through conventional anaerobic digester can not meet the pathogen 

destruction criteria of the recent 40 CFR Part 503 Standards for Class A biosolids. 

Table 1. Fecal coliform destruction through conventional mesophilic anaerobic digestion 

Raw sludge (MPN/g TS) Single-stage digestion (MPN/g TS) 
(15 days HRT, 30-38°C) 

4.3x10^ 9.3x10^ 

2.3x10* 3.5x10® 

1.6x10" 4.1x10® 

2.4x10* 1.4x10® 

1.0x10* 

^o o
 X 

00 

1.1x10' 2.9x10® 

Historically anaerobic digestion has been applied for stabilization of raw, domestic 

primary sludge (PS) and biological solids produced by the activated sludge or trickling filter 

processes. The volatile solids (VS) reduction rate is slowed by even small additions of 

biological solids, particularly waste activated sludge (WAS). The WAS is a dilute suspension 

of microbial cells and cell debris. Because the potential substrates are "membrane-enclosed" 
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within viable cells, WAS becomes more difficult to degrade, compared with primary sludge 

(PS). The presence ofNocardia spp. bacteria and foam producing organic matter in WAS can 

lead to serious foaming. 

In summary, three problems are commonly encountered in the application of 

conventional mesophilic anaerobic digestion of WAS or the mixture of WAS and PS: 1) low 

pathogen destruction, 2) low volatile solids reduction, and 3) foaming. 

Studies have been conducted to find solutions to the problems mentioned above. The 

important research includes: thermophilic anaerobic digestion [21, 22, 23,42, 67, 69], two-

phase anaerobic digestion [26, 42], multiple digestion (meso/thermo) [88], and temperature-

phased anaerobic digestion (TP AD, thermo/meso) [29]. The comparison of these processes in 

terms of pathogen destruction, volatile solids reduction, foaming, and their stability is shown 

in Table 2. Thermophilic anaerobic digestion has been found to achieve much higher pathogen 

destruction and to enhance hydrolysis of the complex biological materials in WAS [29, 68]. 

Foaming is also reduced significantly in a thermophilic anaerobic digester [68]. However, 

thermophilic anaerobic digestion is thought to be sensitive to changes in some parameters, 

such as temperature and VS loading [12]. Also, volatile fatty acids (VPA) are high in the 

effluent fi"om thermophilic anaerobic digesters, which cause offensive odors [19, 21, 23], 

Two-phase anaerobic digestion has been reported to increase the VS removal rate and to 

reduce foaming, but the pathogen destruction rate is low for the mesophilic two-phase system 

due to its low operating temperature and bad odors always exist for the thermophilic 

two-phase system due to the high volatile fatty acids content in its effluent. Although high 
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Table 2. Performance of diflferent processes 

Pathogen VS removal Odor Foaming Stability 
destruction 

Thermophilic 
(single-stage) high 

Two-phase 
(thermophilic) high 

Two-phase 
(mesophilic) low 

Multiple-digestion 
(meso/thermo) high 

TPAD 
(thermo/meso) high 

high 

high 

high 

yes 

yes 

no 

no 

no 

no 

poor 

poor 

good 

middle yes NA good 

high no no good 

stability and VS removal rates were reported by using multiple-digestion (meso/thermo), this 

process could not fiilly take advantage of the thermophilic unit due to the arrangement of the 

thermophilic reactor as the second stage. Besides this arrangement could lead to serious 

foaming in the first mesophilic stage due to high VS loading rate and relatively short hydraulic 

retention time (HRT) on this stage. 

Rationale for the Application of Temperature-Phased Anaerobic Digestion 

The temperature-phased anaerobic process has been under development by Dague and 

coworkers at Iowa State University [29, 30, 35], This system consists of two reactors 
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Operated in series, with the first stage operated at a thermophilic temperature and the second 

stage operated at a mesophilic temperature. This arrangement allows the system to take full 

advantage of both thermophilic (high pathogen destructioa, high VS removal rate, and 

foaming reduction) and mesophilic digestion (less odor effluent and high stability) and to 

avoid the disadvantages of each one: the odor and low stability associated with thermophilic 

anaerobic digestion and low pathogen destruction, low VS removal, and serious foaming 

associated with mesophilic anaerobic digestion. The temperature-phased process has been 

shown to achieve higher organic removals than is possible for single-stage systems operated at 

either 55°C or 35°C. In the author's previous study, temperature-phased anaerobic digestion 

was applied for treating primary sludge. The TP AD was able to achieve much higher VS 

removals than was possible with single-stage mesophilic digestion and almost complete 

destruction of coliforms. The VFA in the second stage of the TP AD system was as low as that 

from the single-stage mesophilic digester. Thus no odor problem was observed in the effluent 

from TP AD system. 

Therefore, it is hypothesized that the TP AD system would achieve high pathogen 

destruction, high volatile solids removal, reduction or elimination of foaming and odors for 

treatment of mixtures of waste activated sludge and primary sludge. The thermo/meso 

arrangement would fiilly take advantage of both thermophilic anaerobic digestion and 

mesophilic anaerobic digestion. 
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Objectives and Scope of Study 

The objectives of this research were to evaluate the performance of the TP AD system 

for the treatment of mixtures of primary and waste activated sludge. The main objectives were 

to determine; 

• volatile solids removal rate; 

• the degree of pathogen destruction; 

• biogas production rate of the TP AD system; 

• the optimum operational conditions for the TP AD system. 
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n. LITERATURE REVIEW 

Microbiology and Biochemistry of Anaerobic Digestion 

Anaerobic digestion is a microbial process. The anaerobic microbial degradation of 

organic matter to methane and carbon dioxide occurs naturally in a variety of anaerobic 

habitats. The objective of the environmental engineer has been to confine the natural 

organisms in a human-made system and to optimize the rates and extents of the natural 

reactions so that polluting substances will be destroyed. 

Functional Groups of Bacteria 

The microorganisms carrying out the reactions in anaerobic digestion are bacteria, and 

that kind of bacteria known as 'anaerobes'; bacteria that live without oxygen and may be 

killed by oxygen. The metabolic stages involved in the production of methane from wastes are 

hydrolysis, acidogenesis, acetogenesis, and methanogenesis [11, 37]. The bacteria involved 

are acidogenic, acetogenic, and methanogenic bacteria, respectively, which can be further 

specified as five groups as shown in Figure 1 [58, 91, 92], 

Acidogenic Bacteria The hydrolytic and acidogenic stages may be combined in 

the anaerobic acidogenic bacteria. Acidogenic bacteria commonly found in digesters are 

species of Butvrivibrio. Propionic. Clostridium. Bacteroides. Ruminococcus. 
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ACETATE 

SIMPLER, SOLUBLE ORGANICS 

PROPIONATE 
BUTYRATE, ETC. 

(LONG-CHAIN FATTY ACIDS) 

COMPLEX WASTEWATER 
ORGANICS 

• CARBOHYDRATES 
• PROTEINS 

• LIPIDS 

BACTERIAL GROUPS: 
1. Fermentative bacteria 
2. Hydrogen-producing, acetogenic bacteria 
3. Hydrogen-consuming, acetogenic bacteria 
4. COa-reducing methanogens 
5. Aceticlastic methanogens 

Figure 1. Methane formation in anaerobic digestion 
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Acetivibrio. Eubacterium. Selenomonas. Lactobacillus. Streptococcus, and members of the 

Enterobacteriaceae [90], In mesophilic sewage sludges there are in the range from 10* to lO' 

hydrolytic bacteria per ml. 

The Acetogenic Bacteria Acetogenic species can be subdivided into two groups. 

One group are not obligately proton-reducing, i.e. hydrogen-producing and the other do 

reduce protons to hydrogen obligately during acetogenesis. The first group consists of the 

homoacetogens and species which may direct their metabolism to proton-reduction in the 

presence of an efficient hydrogen-removing system. Homoacetogenic species are known in the 

genera Acetobacterium [3, 4, 9, 18, 74], Acetoanaerobium [77], Acetoeenium [43], 

Butvribacterium [90], Clostridium [63, 74], Eubacterum [75], and Pelobacter [72, 73]. In 

mesophilic sludges there exist approximately 10^ homoacetogens per ml forming acetate from 

H2 + CO2 [9]. Obligately proton-reducing acetogenic bacteria can only grow in an efficient 

electron-removing environment. The simple mixed culture involving this type of interaction is 

a culture containing the acetogen and a hydrogen-removing bacterium, such as a methanogen. 

Many obligate proton-reducing acetogens have been described: 

Svntrophomonas wolfei degrades benzoate [58, 59], Svntrophobacter wolinii degrades 

propionate [7], Svntropholomonas wolfei degrades butyrate. 

The Methanogens Methanogens are present in sewage sludge at populations up 

to 10^ per ml [80] and contribute up to 10% of the volatile solids. They are a morphologically 
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diverse group of archaebacteria unified by their ability to derive energy from methanogenesis 

[3], Acetate, H2and CO2 are the most important substrates for the methanogens in anaerobic 

digestion. Most methanogenic bacteria utilize H2 and CO2, but species of only two genera, 

Methanosarcina and Methanothrix. can produce methane from acetic acid. 

Reactions in Anaerobic Digestion 

Conceptually, anaerobic digestion of complex organics can be described as a three-

stage process, as shown in Figure 1; (1) Hydrolysis and fermentation; (2) hydrogen and acetic 

acid formation; and (3) methane formation. Five groups of bacteria are thought to be involved 

as mentioned above, each deriving energy from a limited number of biochemical reactions. 

Hydrolysis and Fermentation Most organic matter in wastewater sludge is 

insoluble and can not be assimilated directly by bacteria. Therefore hydrolysis and liquefaction 

of complex organics are necessary to convert them to soluble form that can pass through 

bacterial cell walls for use as energy and nutrient sources. During hydrolysis, the organic 

matter is simply converted into a soluble form that can be assimilated by the bacteria. 

Although essentially no organic waste stabilization occurs, the stabilization of complex 

organics can not be accomplished unless this initial hydrolysis step is functioning properly. 

The overall rate of stabilization and methane fermentation can be limited by this step. 

Following hydrolysis, the organics are fermented to long-chain organic acids, sugars, 

amino acids, and eventually to smaller organic acids such as propionic, butyric, and valeric 
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acids [13,47, 51, 52]. This phase is called the "acid-forming", or fermentation phase. No 

stabilization occurs during this phase. 

Hydrogen is thought to be inhibitory to many of the acid-forming bacteria and must be 

removed from the system as acid production continues [8, 26, 57, 92]. Fortunately, hydrogen 

is consumed by some methanogenic bacteria as their energy source in the reduction of CO2 to 

methane [88, 90, 91, 92]. 

Hydrogen and Acetic Acid Formation Hydrogen is produced by the 

fermentative bacteria and hydrogen-producing, acetogenic bacteria (group 1 and 2 of Figure 

1[92]. Acetate is also produced by these two groups in addition to hydrogen-consuming, 

acetogenic bacteria (group 3). It is believed that hydrogen plays a key role in regulating 

organic acid production and consumption [48, 49, 92], If the partial pressure of hydrogen is 

higher than 10"^ atm, methane production is inhibited and thus results in an increase in the 

organic acids such as propionic and butyric acids [49, 92]. A large, stable population of CO2-

reducing methanogens (group 4 of Figure 1) will ensure maintenance of low hydrogen partial 

pressure. 

Methane Formation Waste stabilization occurs when the conversion of the 

acetic and other volatile fatty acids into methane and carbon dioxide is complete. Methane is 

essentially insoluble in water and readily separates from the sludge. Carbon dioxide either 

escapes as gas or is converted to bicarbonate alkalinity. Methanogenic bacteria are strict 
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anaerobes and oxygen is inhibitory to them [51]. Very few substrates can act as energy 

sources for the methane forming bacteria. It is widely accepted that only formic acid, acetic 

acid, methanol, and hydrogen can be used as energy sources by the various methanogens [44, 

45, 91]. Among these substrates, acetic acid and hydrogen serve as the major substrates for 

methane formation in the anaerobic digestion of wastewater sludges [36], 

Around 72% of the methane is produced from acetate cleavage by aceticlastic bacteria 

[44,81]: 

CH3COOH ^ CH4 + CO2 (1) 

The other 28% of the methane comes from the reduction of carbon dioxide by C02-reducing 

methanogens using hydrogen as the energy source; 

CO2 + Hz ^ CH4 + H2O (2) 

Important Operational and Environmental Factors of Anaerobic Digestion 

Both operational and environmental conditions determine the performance of an 

anaerobic digester. The big difference between anaerobic digestion in nature and in a digester 

is that the latter is controlled by human. It is therefore very important for people to fiilly 

understand the key factors involved in anaerobic digestion. Although many factors have 

impacts on the anaerobic digestion, they can classified as two categories: operational and 

environmental factors. 



www.manaraa.com

13 

Operational Factors 

Temperature Bacteria have three ranges of temperature at which they can grow. 

Three ranges for growth are from 0 to about 15°C, from 15 to 45''C, and from 50 to 65°C. In 

the temperature range below 45°C (the 'mesophilic' and 'psychrophilic' ranges) digestion 

becomes slower as temperature decreases. Normal 'mesophilic' digestion virtually ceases at 

about 15°C. O'Rourke [62] suggested that 20°C was the lowest practical limit for lignin 

breakdown, and thus the lowest practical temperature for anaerobic sludge digestion. 

Anaerobic sludge digesters are most often operated in a mesophilic range: 30 to 38°C. 

Very few anaerobic digesters are operated in a thermophilic range from 50 to 65°C due to 

higher energy consumption and unsteady operation [22]. Each specific methane-forming 

bacterium has an optimum temperature for growth. If temperature fluctuates, no group of 

methane formers can achieve a stable population. This results in reduced stabilization and 

reduced methane formation [2]. Therefore, it is important that the temperature remain 

constant. 

Hydraulic Retention Time (HRT) and Solids Retention Time (SRT) HRT is 

the average time that fluid stays in a reactor and SRT is the average time that biosolids stay in 

the system. In conventional digesters, HRT is equivalent to system SRT (HRT = SRT). 

Retention time is an important factor for bacterial growth. To ensure the conversion of 

complex organic matter to methane and carbon dioxide, the bacteria in the digester must be of 

a sufficient quantity and concentration, and retention time must be adequate for them to 
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metabolize substrates. From a design standpoint, this means proving sufficient reactor volume 

for a given operating condition, which directly affects system cost. 

The use of SRT as the most important design parameter is a relatively new concept 

that providing insight into how changes in operating conditions affect system performance 

[47, 54]. SRT is defined as the mass of solids contained m the reactor divided by the mass of 

solids discharged and/or wasted from the system per day. For completely stirred tank reactor 

(CSTR) such as well mixed anaerobic digester, SRT and HRT are equal and can be calculated 

as follows; 

SRT = HRT = V/Q (3) 

where: 

HRT = hydraulic retention time 

SRT = solids retention time, day 

V = volume of reactor, L 

Q = flow rate of incoming sludge, L/d 

Anaerobic sludge digesters have been designed empirically, usually on the basis of a 

specific digester volume (cubic meters or cubic feet) per capita of contributing population, or 

by volatile solids (VS) loading rate (kg VS/m^-day or lb VS/cu fi:-day) [40, 54, 67]. However, 

SRT has now become the most important parameter for the system design and operation 

because it really defines the relationship between the bacterial system and digester operating 

condition. 
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Loading Rate The solids retention time, hydraulic retention time, reactor volume, 

and solids concentration determine the solids loading rate to a digester. These factors 

determine the amount of sludge the bacteria must stabilize and the amount of time the baaeria 

have to stabilize the sludge. The maximum loading rates possible for stable operation are 

determined mainly by microorganism growth and stabilization rates. In general, higher 

temperatures are associated with higher growth and stabilization rates, and therefore could 

result in higher solids loading rates. For anaerobic digester at a temperature of 35°C, the 

typical volatile solids loading rates are 1.6 to 3.2 kg/m^/d at SRTs from 15 to 20 days [2, 54]. 

Mixing Application of mixing domestic sludge digesters can provide efficient 

utilization of the entire reactor volume, prevent short-circuiting and temperature gradients, 

transport sludge solids from the bulk solution to the microorganism cell wall and disperse 

metabolic end products from the cell wall to the bulk solution, and maintain intimate contact 

between the bacteria, bacterial enzymes, and their substrates [2, 78]. In short, adequate mixing 

provides for a uniform environment to ensure good digestion. The effect of inefficient mixing 

is manifested in the decrease in effective system volume and hence a decrease in SRT. Other 

concerns with poor mixing are foaming and scum formation, and excessive solids deposition. 

Studies with full-scale digesters have shown that ineflScient mixing may reduce the 

effective volume of a digester by as much as 70% [55, 87]. A volume redurtion of 70% at 

35°C results in a process efficiency of less than the desired 90%, while a volume reduction of 

70% at 30°C results in near washout conditions. Thus adequate mixing is critical if digesters 

are to operate as designed. 
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Environmental Factors 

The anaerobic process is essentially biochemical in nature. The proper chemical 

environment is required for bacteria to grow. The following environmental factors are 

important. 

Nutrients Nutrients must be provided in sufiBcient quantities to ensure efiBcient 

digestion. A commonly accepted, empirical formula for bacteria is C5H7O2N [76], in which 

nitrogen comprises approximately 12% of bacterial cell mass. Nitrogen is needed in the 

synthesis of proteins, enzymes, ribonucleic acids (RNA), and deoxyribonucleic acids (DNA). 

The phosphorus requirement for bacterial growth is about 1/7-1/5 of the nitrogen requirement 

[82], 

Other nutrients such as iron, nickel, cobalt, sulfur, calcium, and some trace organics 

are also required, but in smaller amount [10, 20, 32, 61, 65, 66, 82, 89], Domestic sludge 

usually contains sufficient quantities of nitrogen and phosphorus for bacterial growth [50], 

However, some industrial wastes may require addition of nitrogen and phosphorus. It is also 

thought that domestic sludge has sufficient quantities of all nutrients. 

pH Maintenance of system pH in the proper range is necessary for efficient 

anaerobic digestion. The widely accepted range is 6.5-7.6 [14, 50]. This range is determined 

by methanogenic bacteria, because they are most sensitive to pH changes. When system 

imbalance occurs, volatile acids produced by acetogenic bacteria increase at a faster rate than 

can be decomposed by the methane bacteria. The accumulation of acids result in a drop of pH. 
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If pH maintains at unacceptably low levels, methane production will decrease and may 

eventually cease. 

Volatile acids Volatile acids are intermediates of sludge stabilization. 

Accumulation of volatile acids suggests that the utilization of the volatile acids is inhibited. 

There are conflicting reports about the inhibitory effects of volatile acids in anaerobic 

digestion. McCarty and McKinney [49] had earlier found that acetic acid in high concentration 

did not inhibit digestion. However, the experiments conducted by Kroeker [38], suggested 

that propionic acid was inhibitory to laboratory digesters and it was postulated that it is the 

unionized volatile acids GJVA.), that are toxic to the methane bacteria. Inhibition was 

observed to occur at UVA levels of 30-60 mg/L. Among many volatile acids, acetic acid is the 

predominant one and the following equilibrium exists: 

CH3COOH o CHsCOO- + IT (4) 

It is clear that the concentration of UVA is dependent on the pH in a digester. To reach a 

UVA concentration of 30 mg/L at pH 7.0, a total volatile acid concentration of approximately 

5,500 mg/L is required, while at pH 6.5, 1,800 mg/L of total volatile acids are needed. For a 

UVA of 60 mg/L, approximately 11,000 and 3,600 mg/L, at pH 7.0 and 6.5, respectively, are 

required. 

In spite of some controversy as to whether the inhibition is due to the UVA or low 

pH, it is clear that high concentrations of volatile acids can be tolerated so long as the pH does 

not fall out of the optimum range of 6.5-7.6. 
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Alkalinity In anaerobic digesters the major acid-base system that controls pH is 

the carbonate-bicarbonate acid-base system. According to McCarty [51] when total volatile 

acids in a well balanced digester are low, bicarbonate alkalinity is approximately equal to total 

alkalinity. Digesters should have a bicarbonate alkalinity of2,500 to 5,000 mg/L to neutralize 

volatile acids and prevent a drop in pH. 

Toxicity Whether a substance is toxic to a biological system depends on the 

nature of the substance, concentration, and acclimation. Many substances will stimulate the 

reaction in low concentrations; however, they become inhibitory to the system as their 

concentrations increase. Substances commonly reported as inhibitory to anaerobic digestion 

include inorganics such as the alkali and alkaline-earth metals, heavy metals, ammonia-

nitrogen, sulfide, and a wide variety of organic compounds. Table 3 contains a summary of the 

concentrations of inorganics thought to be inhibitory to anaerobic digestion. Table 4 lists 

concentrations of a variety of organics considered to inhibit anaerobic digestion. 

Ammonia-Nitrogen Ammonia-nitrogen and bicarbonate alkalinity are 

produced during the digestion of organics containing nitrogen. Many studies [50, 51] have 

been reported that concentrations of ammonia between 50 and 200 mg/L are beneficial. 

McCarty reported that ammonia-nitrogen was considered to be toxic depending on pH [1, 50, 

83]. It may exists in the form of the ammonium ion, NHt", or as dissolved ammonia gas, NH3, 
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Table 3. Concentrations of inorganics reported to be inhibitory to anaerobic digestion 

Concentration, mg/L 

Substance Moderately inhibitory Strongly inhibitory 

Na* 
K* 
Ca* 
Mg* 
Ammonia-nitrogen 
Sulfide 
Copper (Cu) 

Chromium VI (Cr) 

Chromium in 

Zinc (Zn) 

3,500-5,500 
2,500-4,500 
2,500-4,500 
1,000-1,500 
1,500-3,000 

200 

8,000 
12,000 
8,000 
3,000 
3,000 

200 
0.5 (soluble) 
50-70 (total) 
3.0 (soluble) 
200-260 (total) 
180-420 (total) Nickel (Ni) 
2.0 (soluble) 
30 (total) 
1.0 (soluble) 

Table 4. Concentrations of various organics inhibitory to anaerobic digestion 

Organic Inhibitory concentration (mg/L) 

Formaldehyde 50-200 
Chloroform 0.5 
Ethyl Benzene 200-1,000 
Ethylene Bichloride 5 
Kerosene 500 
Linear ABS (detergent) 1% of dry solids 
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as shown by the following equilibrium: 

NH3 + H2O <=> NH4' + Off (5) 

It is widely accepted that the toxicity is associated with free ammonia (NH3-N). 

Concentrations above 100 mg/L may cause severe toxicity [37, 38]. It is believed that pH 

control can alleviate ammonia toxicity by maintaining free ammonia concentrations below 100 

mg/L [50], Therefore, a pH near 7.0 is recommended to prevent system failure due to free 

ammonia. 

Different studies report various levels of ammonia-N at which it becomes toxic. 

McCarty reported that concentrations between 1,500 and 3,000 mg/L were inhibitory at pH 

levels above 7.4 and those in excess of 3,000 mg/L were toxic regardless of pH. Other 

researchers reported inhibitory of methane fermentation at ammonia-N concentrations near 

2,000 mg/L [16, 38, 53]. 

Recent work indicates that ammonia-N toxicity may be responsible for the increased 

sensitivity of thermophilic digestion of domestic sludges compared to mesophilic digestion 

[22], At thermophilic temperatures more ammonia-N is released due to the more complete 

degradation of proteinaceous materials. 

Sulfides Lawrence et al. [41] found that soluble sulfides in excess of 200 

mg/L caused significant decreases in methane production. Rudolfs and Ambers [71] observed 

a decreased gas production of near 30% following addition of200 mg/L sulfide. 
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Feed Characteristics As mentioned before, anaerobic digestion was first used for 

the treatment of primary sludges. Now it is more commonly applied to biological sludge 

(typically fi'om activated sludge and trickling filter processes) and to mixtures of primary and 

biological sludge. There is an inherent difference in the biodegradability of primary sludge and 

waste activated sludge. Based on O'Rourke's data [62], McCarty [47] estimated that the 

COD contained in primary sludge is 69% biodegradable and the volatile solids of PS is also 

approximately 69% biodegradable. Therefore, at a very long digester SRT there would be 

nearly 69% reduction of COD and VS. Typical values in the literature are 40-60% reduction 

in COD and 40-70 reduction in VS [31, 33, 54, 84], Reductions in BOD vary fi'om 60 to 90% 

[51, 54]. The reduction in COD or VS is a function of SRT as mentioned before, and relative 

process efficiency can be estimated by comparing the observed reduction with the reported 

ultimate biodegradability. 

It is generally believed that WAS is approximately "half as digestible as primary 

sludge." The degradable portion of WAS is comprised primarily of active bacterial cells. The 

estimated biodegradable fraction of WAS is 68% [27]. However, this does not mean that 

WAS is 68% degradable, because WAS also contains nonbiodegradable debris from dead 

bacterial cells and refractory organics not removed by primary sedimentation. Stuckey [84] 

reported the ultimate anaerobic biodegradability of WAS to be 48-53% of the COD under 

mesophilic conditions and 45% under thermophilic conditions. The observed COD or VS 

reduction reported in the literature [24, 27, 46, 54, 57, 84] varies in a range of 20-50% under 

mesophilic conditions (30-38°C) and 36-50% under thermophilic conditions (50-65°C). Thus, 
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WAS is less biodegradable than primary sludge. Even at very long SRTs, the reduction of 

COD or VS are generally less than 50%. 

Thermophilic Anaerobic Digestion 

Most wastewater treatment plants are employing anaerobic digestion systems to treat 

wastewater sludge, either primary sludge or waste activated sludge or mixtures of both. 

Almost all anaerobic digesters for sludge treatment are operated in the mesophilic range. Very 

few are operated at a thermophilic temperature. The reason behind this is that thermophilic 

anaerobic digestion system is thought to have following disadvantages: 

(1) high energy requirement for heating, 

(2) high volatile fatty acids in the effluent, resulting poor supernatant quality, and 

(3) poor process stability. 

However, thermophilic anaerobic digestion can offer several advantages over mesophilic 

anaerobic digestion: 

(1) increased volatile solids removal, 

(2) increased destruction of pathogenic organisms, and 

(3) improved dewatering ability of the digested sludge. 

The earlier research on thermophilic anaerobic digestion began in the 1930s. In 1930, 

Rudolfs and Heukelekian [70] conducted bench scale experiments using thermophilic 

anaerobic digestion to treat primary municipal sludge. They observed a higher yield of gas per 

gram of volatile matter added and a greater percentage of volatile solids destruction. There 
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was no significant difference in gas composition at the mesophilic and thermophilic 

temperatures. They operated their system at different temperatures of45-55°C and SRTs from 

11 to 15 days. They stated that the thermophilic anaerobic digestion system for the treatment 

of primary municipal sludge was applicable and that the SRT in this temperature range from 

45 to 55°C was shorter than for the mesophilic temperature range. 

The earliest plant scale study of thermophilic anaerobic digestion was conducted by 

Fischer and Greene [19] in 1930s. Their plant scale thermophilic anaerobic digestion system 

was operated at a temperature of 54°C at Aurora, Illinois in 1931. The system was fed primary 

sludge only. The SRT was 12.9 days, and the organic loading was 0.45 kg volatile 

matter/m^/d (0.028 Ib/ft^/d). It was observed that volatile solids removal in the thermophilic 

anaerobic digestion (56.4%) was higher than that in the mesophilic digester (50.5%). 

There were several plant scale studies in 1940s. Fischer and Greene [19] began their 

research on full-scale thermophilic anaerobic digestion system in 1942. They had run their 

thermophilic anaerobic digestion system in Jackson, Michigan for three years. Two three-stage 

digesters were used. Only the primary tanks were heated and operated at temperatures of 29 

and 52°C, respectively. Both systems were fed with a mixture of 1 to 3 volumetric ratio of 

primary and waste activated sludge. The total solids content of the mixture was 5.2% with 

volatile part of 64% in the total solids. The primary tanks of two three-stage systems had the 

same SRT of 27 days and the same organic loadings of 0.53 kg volatile matter/mVd (0.033 

Ib/ft^/d). The primary stage of the thermophilic digester achieved 44.2 % volatile solids 

destruction, higher than 38.0 % achieved by the primary tank of the mesophilic digester. Gas 
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produced from the thermophilic unit per kg of volatile matter destroyed was also a little bit 

higher than that from the mesophilic unit(1.08 vs 1.0 m^). The thermophilic sludge from the 

primary tank had a higher solids concentration (3.8 vs 3.3%) and the supernatant from the 

third stage of the thermophilic unit was of higher quality than that from the third stage of the 

mesophilic unit. 

There were more extensive plant scale studies of thermophilic anaerobic digestion in 

1950s. Garber [21, 22] conducted one of the most extensive plant-scale tests of thermophilic 

anaerobic digestion in the U.S. The full-scale anaerobic digestion system was operated from 

1953 to 1957 at the Los Angeles Hyperion Plant. The system was a simple single-stage 

anaerobic digester and was fed with a mbrture of approximately 70% primary and 30% waste 

activated sludge. The total solids content of the mixture was 6.4%. The anaerobic digester 

were operated at three different temperatures of 29, 38 and 49°C. Two different detention 

times of 12 and 24 days and organic loadings of 2.1 and 3.8 kg volatile solids/m7d (0.13 and 

0.24 Ib/fl^/d) were used. They reported a 54% of the volatile solids destruction At a 

thermophilic temperature of 49''C, a 54% of the volatile solids destruction was achieved for 

both loadings and detention times. This was the highest volatile solids removal achieved by the 

system compared to that obtained at other temperatures. The gas production per kg of volatile 

solids destroyed was approximately the same at all temperatures. Higher volatile fatty acids 

concentrations were observed in the thermophilic digesters, varying from 600 to 800 mg/L 

while concentrations of volatile acids at other temperatures varied in a range from 100 to 200 

mg/L. 
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Popova and Bolotina [67] reported the plant scale tests on the anaerobic digestion in a 

1 million m7d (260 MGD) treatment plant in Moscow, U.S.S.R. The test began in 1944, and 

in 1958 the convertion of all of the digesters from mesophilic to thermophilic was complete 

and they were operated at a temperature of 51°C. The digesters were fed with a mixture of 

primary and waste activated sludge. The total solids level varied in a range from 3 to 7% with 

a volatile part of 70% in the total solids. Steam injection with recirculation of the steam-

sludge mixture was applied for heating and mixing. The application of the thermophilic 

digestion reduced the detention time from 18 to 9 days and resulted an increase in organic 

loading from 1.65 up to 3.5 kg volatile solids/m7d, with an organic solids destruction of up to 

50%. The sanitery quality was improved significantly. The thermophilic digestion system 

achieved complete viable helminth eggs destruction, while only 80% reduction of viable 

helminth eggs was obtained through the mesophilic digestion system. At end of 1950s, 

Golueke [28] conducted bench scale tests to investigate the impacts of temperatures on the 

digestion of primary sludge. The same detention time of 30 days and an organic loading of 1.4 

kg volatile matter/m^/d (0.09 lb/ft7d) were applied to the system, but at different operating 

temperatures. Because of this long detention time and low solids loading, no significant 

difference in solids destruction for temperatures ranging from 35 to 55°C was observed. Gas 

production rates, gas composition, and general sludge appearance were nearly the same at 

temperatures ranging from 35 to 60°C. However the sludge produced at 50 °C and 60 °C 

showed significant difference in their dewatering characteristics, as measured by the amount of 

coagulant required. Higher coagulant dosage was required for the sludge produced at 50 °C 
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than at 60 °C. They also observed that sludges produced at the higher temperatures had higher 

volatile acids concentrations. 

Another similar study on the effects of temperature on the performance of anaerobic 

digestion was conducted by Malina. The substrate he used was waste activated sludge. The 

system was operated at the same SRT of 6 days and the same organic loading of 4.8 kg 

volatile matter per cubic meter per day. At a temperature of 52.5°C, the system achieved 42% 

volatile solids destruction. At temperatures of 42.5 and 32.5°C the volatile solids destruction 

was a little bit low, 41 and 39%, respectively, which were not significantly low. Higher 

volatile acids concentrations were also observed at the higher temperatures. 

Since 1972, Garber et al. [22] continued their research on thermophilic anaerobic 

digestion. Their plant-scale thermophilic anaerobic digester was operated at 46-5 TC. They 

reported that the operation of a thermophilic anaerobic digester is similar to that of a 

mesophilic anaerobic digester. However the thermophilic anaerobic digestion system is more 

sensitive to temperature change. High volatile acids concentrations were observed when the 

digester temperature was raised to 52°C. Garber [22, 23] fijrther reported that thermophilic 

operation was able to achieve much higher destruction of pathogenic bacteria. 

At the end of 1970s, Rimkus [69] conducted another extensive plant-scale test at the 

West-Southwest Sewage Treatment Works, Chicago, Illinois. The system was fed with a 

mixture of WAS and PS with 90% of WAS and 10% of PS. The thermophilic anaerobic 

digester was operated at a temperature of 52.7°C and an SRT of 7 days. They reported an 

increase in volatile solids destruction (34.0%) compared to mesophilic anaerobic digester 
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(31.3%). The higher concentration of volatile acids were observed and hence the 

thermophilically digested sludge had a greater odor intensity than mesophilically digested 

sludge. A remarkable reduction in foaming in the thermophilic anaerobic digester was 

observed and no adverse effects due to temperature change (3°C) were experienced in the 

thermophilic digester in a 24-hour period. They concluded that operation of the thermophilic 

anaerobic process did not require any greater knowledge or skills by the operating personnel 

than that required for the mesophilic process. 

In the 1980s, there was not much research on thermophilic anaerobic digestion. 

Instead, some modification was made to overcome the disadvantages of the thermophilic 

anaerobic digestion. Torpey [88] studied the multiple digestion (mesophilic/thermophilic) in 

New York City at the Rcckaway Wastewater Treatment Plant. A two-stage digestion system, 

consisting of a mesophilic stage, followed by a thermophilic stage, was used. He observed a 

volatile solids destruction of 60%, improved dewatering characteristics, and high stability of 

the system. 

At the end of 1980s, Lee et al. [42] conducted a lab-scale study to investigate the 

pathogen destruction through thermophilic anaerobic digestion. A two-phase system at a 

thermophilic temperature of 53°C was operated and a mixture of WAS and PS with a 2:1 

volumetric ratio was used as substrate. They reported a significant increase in volatile solids 

removal in the thermophilic acid-phase digester and much higher fecal coliform destruction in 

all thermophilic units than that in mesophilic units. 

Most recently Dague et al. [29, 30, 35] developed an innovative process, temperature 
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phased anaerobic process (TPAP). They reported that the new system was able to combine 

the advantages of both thermophilic and mesophilic anaerobic reactors and avoid the 

disadvantages of both. Han and Dague [29] investigated the temperature-phased anaerobic 

digestion (TPAD) system for treating primary sludge. They found 18% higher volatile solids 

removal and much higher total and fecal coliform destruction achieved by TP AD compared to 

conventional mesophilic anaerobic digesters and volatile acids level in the effluent from TP AD 

was the same as that from conventional mesophilic digester. 

Development of Temperature-Phased Anaerobic Digestion 

In 1992, Harris conducted a comparative study of mesophilic and thermophilic 

anaerobic filters under Dr. Dague at Iowa State University. At first the filters were operated in 

parallel at 35 and 55°C and non-fat dry milk was used as the substrate. The thermophilic filters 

produced a lower quality effluent than the mesophilic fibers at high organic loading rates. At 

the end of the study, it was decided to run the filters in series with the thermophilic filter as 

the first stage and the mesophilic filter as the second stage. This temperature-phased anaerobic 

filter system was able to achieve over 90% total COD removal at system loadings up to 20 

g/L/d. Further research on this system was conducted by Kaiser (35). In her study three sets 

of filter system with a thermophilic first stage and mesophilic second stage were tested. The 

system were operated at HRTs of 24, 36, and 48 hours and achieved soluble COD removals 

from 96.9 to 99.5% and total COD removals from 89.8 to 98.5%. In 1993, Steinbach and 

Dague applied the concept of temperature phase to Anaerobic Sequencing Batch Reactor 
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(ASBR). Similarly to the previous research, two ASBRs were operated in series, with the first 

stage at a thermophilic temperature of 55°C and the second stage at a mesophilic temperature 

of 35°C. Non-fat dry milk was used as substrate. The system was able to achieve soluble COD 

removals greater than 97% and total COD removals greater than 90% at system HRTs of 54 

and 18 hours. 

Han and Dague (1994) conducted a lab-scale study on the application of thermophilic 

anaerobic digestion for treatment of domestic wastewater sludge (primary sludge). Two 

completely stirred tank reactors (CSTRs) were applied as the temperature-phased anaerobic 

digestion system with the thermophilic unit (55°C) as the first stage and mesophilic unit as the 

second stage. They observed 18% higher VS removal for the TP AD system over conventional 

mesophilic anaerobic digester and a 5 to 6 log reduction of total and fecal coliforms through 

TP AD compared to less than one log reduction by conventional single-stage anaerobic 

digestion system. The biogas composition was similar at thermophilic and mesophilic unit. 
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HL EXPERIMENTAL STUDY 

This study was conducted from August 1994 to July 1996. Lab-scale reactor system 

were set-up and operated under different conditions. Data were collected at various SRTs 

after the system reached the steady-state. 

Experimental Set-Up 

Two TP AD systems were designed with different volume ratios of the first stage to 

the second stage. For comparison, a single-stage system was set-up and run simultaneously 

with the TP AD system. The volume and dimensions of the reactor system was designed 

according to the goal of the study. The whole system consisted of feeding tank, reactor, and 

biogas measurement unit. 

Design and Dimensions of Reactors 

The laboratory set-up consisted of three systems. One is a conventional, single-stage 

system, operated at a temperature of 35°C. The other two systems were temperature-phase 

anaerobic digesters (TPAD). The first stage was operated at a thermophilic temperature of 

SS^C and the second stage operated at a mesophilic temperature of SS^C. 

Five Plexiglas reactors were used, one for the single-stage system and the other four 

(4) for the two TP AD systems. All five (5) reactors were fabricated by the Engineering 

Research Institute (ERI) Machine Shop at Iowa State University. Reactor 1 (Rl) for the 



www.manaraa.com

31 

single-stage system, shown m Figure 2, had a working volume of 14 liters. The reactor height 

was 45 cm and the inside diameter was 21.6 cm. The wall thickness was 0.64 cm. The top 

flange had a diameter of 26 cm and a thickness of 1 cm. It was attached to the reactor flange 

by 8 hex-head bolts. The flanges were sealed by a 0.32 cm 0-ring which fits into a groove in 

the reactor flange. Mechanical mixing was applied to all five reactors. The mixer of R1 had a 

shaft length of 37 cm. The diameter of the paddle was 8 cm. 

The two-stage system A consisted of two reactors (R2 and R3) with R2 as the first 

stage and R3 as the second stage. The working volumes of R2 and R3 were 4 and 10 liters, 

respectively. The total working volume of the two-stage system A therefore was 14 liters, the 

same as the volume of the single-stage system. The volume ratio of the first stage to the 

second stage was 2:5. Two-stage system B consisted of two reactors (R4 and R5) with R4 as 

the first stage and R5 as the second stage. The working volume of R4 was only 2 liters while 

R5 had the same working volume as R3, 10 liters. Thus the total working volume of two-

stage system B was 12 liters and the volume ratio of the first stage to the second stage was 

1 ;5. The structure of all five reactors was similar. The dimensions of R2, R3, R4, and R5 are 

shown in Figures 3, 4, 5, and 6, respectively. 

Each of five reactors had four ports on the top flange. The center port was for 

instillation of the mixer and the other three were for influent, effluent, and gas tubings, 

respectively. All the ports had the same diameter of 1 cm. 
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Figure 2. Dimensions of Reactor 1 (Rl) 
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Figure 3. Dimensions of Reactor 2 (R2) 
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Figure 4. Dimensions of Reactor 3 (R3) 
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Figure 5. Dimensions of Reactor 4 (R4) 



www.manaraa.com

36 

26.7 cm 

20.3 cm 

47 cm 

id = 1 cm 

Figure 6. Dimensions of Reactor 5 (R5) 
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Reactor Conflguration and Equipment 

The single- and two-stage systems were set-up in a constant temperature room 

maintained at a temperature of 35°C. The first stage of the two-stage system A and B were 

heated to 55°C using a water bath maintained at a constant temperature of 55°C. 

The configurations and the relative equipment of the single-stage and the two-stage 

systems are shown in Figures 7 and 8, respectively. 

The single-stage system consisted mainly of three parts: a feeding tank, a reactor, and 

a gas measuring unit. The substrate was stored in the feeding tank in a refiigerator at a 

temperature of 4°C. The reactor was fed semicontinuously (24 times/day) by a masterflex 

pump. All pump heads were masterflex size 18. Tygon tubings with an inside diameter of 3/8" 

(0.95 cm) were used to connect various components. The moving direction of the substrate 

and biogas through the system are indicated by arrows in Figure 7. 

The substrate was pumped into the reactor and was digested in it. The reactor was 

fiilly mixed by a mixer driven by T-Line Laboratory Stirrer (Talboys, Engineering Corp., 

Emerson, NJ). The operating temperature of the reactor was 35°C. The digested sludge was 

pumped out by a masterflex pump and discharged to the sewer. The biogas produced passed 

through the gas measuring unit into a vent. Foam was separated in the foam separation bottle. 

A gas bag was used to avoid pulling a vacuum when the digested sludge was withdrawn fi-om 

the reactor. The gas was cleaned by a sulfide scrubber and measured by a Wet-Tip Gas Meter 

produced by Rebel Point Wet-Tip Gas Meter Co. (5840 Robert E. Lee Dr., Nashville, TN 

37215). Gas samples were taken fi-om the sample port. 
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1. Feeding tank 2. Feeding pump 3. Single-stage digester (Rl) 4. Effluent pump 
5. Foam separation bottle 6. Gas bag 7. Sulfide scrubbers 8. Gas sample port 
9. Gas meter 

Figure 7. Diagram of the single-stage digestion system 
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16 13 11 

1. Feeding tank 2. Feeding pump 3. First stage digester 4. Pump 
5. Second stage digester 6. Effluent pump 7, 12. Foam separation bottles 
8, 13. Gas bags 9, 14. Sulfide scrubbers 10, 15. Gas sampling ports 11, 16. Gas meters 

Figure 8. Diagram of the two-stage digestion system 
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The two-stage system was arranged with two reactors in series. The substrate was fed 

from the feeding tank into the first stage by a masterflex pump. The effluent from the first 

stage was pumped into the second stage. The first stages, R2 and R4, were set in a water bath 

held at a constant temperature of 55°C. An Isotemp Immersion Circulator was used to heat 

the water bath (Fisher Scientific). The gas measuring units for R2, R3, R4, and R5 were the 

same as that for R1. The same kind of mixers were used for all five reactors. 

Experimental Procedure 

After all systems were set-up, each reactor was seeded and fed with substrate. 

Following successfiil start-up of the system, reactors were operated under various conditions 

and daily monitoring work was done to maintain their normal operations. 

Substrate 

The substrate fed to the system was a mixture of primary and waste activated sludge. 

In order to study the impact of WAS on the mixture and to get information over a range of 

different ratios of PS and WAS, two typical ratios were chosen, 1;1 and 1:3 (volume ratio of 

PS to WAS). Both the PS and WAS were obtained from Marshalltown, Iowa, Water 

Pollution Control Plant (WPCP). The WAS had an approximate total solids (TS) content of 

4%. The TS content of the PS varied in a range from 3 to 5%, but was adjusted to 4% by 

either dewatering or dilution. Each batch was used for 2-4 weeks and was stored in a 

refrigerator at 4°C before feeding to the system. Because of the low temperature and short 
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Storage time, the composition of the PS and WAS maintained nearly the same for each batch. 

The primary sludge was screened with a No. 5 (opening 4.00 mm) sieve to avoid clogging of 

the tubing system. The mixture was made according to the desired volume ratio, 1; 1 or 1:3 

(PS : WAS). The characteristics of the Marshalltown primary sludge and waste activated 

sludge are shown in Table 7. 

Table 7. Characteristics of Marshalltown Primary and Waste Activated Sludges 

Primary Sludge Waste Activated Sludge 

Total Solids, % 3.0-5.0 3.7-4.2 
Volatile Solids, % 2.9-3.2 3.0-3.3 
Chemical Oxygen Demand, g/L 50-70 45-65 
Total Coliforms, MPN/gTS lO'-lO' lO'-lO' 
Fecal Coliforms, MPN/gTS 10®-10' lO'-lO' 
Alkalinity, mg/L as CaCOs 800-1500 1000-1700 
pH 5.0-6.5 5.5-6.5 

Reactor Start-Up 

The single-stage and the second stage of the TP AD system were seeded initially with 

digesting sludge from the mesophilic anaerobic digester at the Marshalltown, Iowa, WPCP. 

The first stages of TP AD systems were thermophilic and therefore seeded with thermophilic 

digesting sludge available from ongoing research. Start-up of the temperature-phased 

anaerobic digesters A and B took one month while holding the SRT/HRT for these two 

systems at 14 and 12 days, respectively. The start-up of the single-stage system at an SRT of 
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20 days suffered serious foaming and the system eventually failed. It was then decided to start 

it at an SRT of 24 days. This time the system did not fail, however foaming was still severe. 

Operation of the System and Daily Maintenance 

Both single and TP AD system were operated in a semicontinuous manner by feeding 

and withdrawing sludge from them 24 times per day. Each reactor was fully mixed 

intermittently by a mechanical mixer, on a 4-minutes mixing of 5-minute cycle. The reactor 

was withdrawn first and then fed with the substrate. For the two-stage system, the second 

stage was withdrawn first and then the first stage. The eflQuent from the first stage was fed to 

the second stage, while the first stage was fed last with substrate from the feeding tank. 

Before each feeding, the sludge in the feeding tank was mixed completely by a mechanical 

mixer to ensure the TS content was consistent all times. 

In addition to data collection, some routine maintenance work was done often to keep 

each system running normally. This kind of work included (1) recording the gas meter reading 

for all five reactors at the same time every day; (2) recording the temperature and pressure in 

the laboratory; (3) adding substrate to the feeding tank; (4) checking the temperature in the 

constant temperature room and of the water bath, and (5) maintaining all equipment at normal 

operating conditions. 
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Experimental Testing 

Several tests were conducted on the systems. These included (1) influent and effluent 

total solids and total volatile solids, (2) influent and effluent COD, (3) influent and effluent 

total coliform and fecal coliform, (4) effluent volatile fatty acids, (5) effluent alkalinity, (6) 

influent and effluent pH, and (7) biogas composition. 

Total Solids (TS) and Total Volatile Solids (TVS) 

The TS and TVS tests were conducted according to Standard Methods [24], 

Evaporating dishes were used for these tests. The evaporating dishes were dried in a 530°C 

muffle fiimace for I hour and weighed just before use. A sample volume of 10 to 20 mL was 

added to the dishes and they were dried in a 103°C oven for 1 hour. After drying, the dishes 

were cooled in a desiccator for not less than one hour and then weighed. The total solids in 

the samples were then calculated as: 

TS = ^^^^*1,000 (6) 

where: 

TS = total solids concentration in the sample, g/L 

B = the weight of evaporating dish with dried residue, grams 

A = the weight of evaporating dish, grams 

V = the volume of the sample, mL 
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To determine TVS, the dishes with residue were placed in the 550°C muffle furnace 

for 20 minutes for volatilization of the non-inert material in the samples. After burning, the 

dishes were cooled for one hour in a desiccator and then weighed again. The TVS was 

calculated as; 

TVS = ^"^^*1,000 (7) 
V 

where: 

TVS = total volatile solids concentration in the sample, g/L 

B = the weight of the dish after drying, grams 

C = the weight of the dish after burning, grams 

V = the volume of the sample, mL 

Chemical Oxygen Demand (COD) 

The COD test was conducted according to Standard Methods [24]. Test tubes with 

Teflon-line screw caps were used for this test. A sample volume of 5 mL was put in the tube 

and then 3 mL of 0.1 normal K2Cr207 containing 33.3 mg/L HgS04, and 7 mL concentrated 

H2SO4 containing 10.0 mg/L AgS04, were added to the sample. The prepared samples were 

placed in a 150°C oven for 2 hours, after which they were titrated to the ferrous endpoint with 

0.1 normal ferrous ammonium sulfate (FAS). Two blanks and two standards, which used 5 

mL of distilled water instead of sample, were used to standardize the K2Cr207 and FAS, 

respeaively. They were treated exactly the same as the samples, except that the standards 

were not placed in the oven. The COD of a sample was calculated as: 
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COD - (A-B)'M'8,000'DF 
V 

where; 

COD = chemical oxygen demand of the sample, mg/L 

A = volume of FAS required to titrate a sample to the ferrion endpoint, mL 

B = volume of FAS required to titrate a sample to the ferrion endpoint, mL 

M = molarity of the FAS solution, mol/L 

DF = dilution factor of the sample 

V = sample volume, mL 

8,000 converts mol FAS to mg O2 

Conform and Fecal Coliform Tests 

Since human fecal pathogens vary in kind (bacteria, protozoa, viruses) and in number, 

it would be impossible to test each sample for each pathogen. Instead, an indicator organism is 

generally used to suggest the possible presence of pathogens by indicating the presence of 

fecal material. Coliform and fecal coliforms are such indicators. 

The coliform group is comprised of Gram-negative, nonspore-forming, aerobic to 

facultatively anaerobic rods, which ferment lactose to acid and gas at 35°C in 48 hours. The 

major organisms in the coliform group are E. coli. Enterobacter aerogens. and Klebsiella 

pneumoniae. A subgroup of the coliforms, the fecal coliforms, consists of Gram-negative, 

nonspore-forming, facuhative anaerobic rods, which ferment lactose to acid and gas at 44.5°C 

in 48 hours. 
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These tests were conducted according to the standard procedure [83]. Durham tubes 

were used for these tests. Lactose Lauryl Tryptose Broth was used as incubation solution, 

which had a composition as follows; 

After the lactose broth was added in Durham tubes, they were placed in an autoclave at a 

temperature of 121°C and a pressure of 15 psi for 20 minutes. After sterilization by the 

autoclave, they were cooled at room temperatures. Two series of tubes were prepared, one 

series of tubes for coliform and the other for fecal coliform. The samples were diluted by 

different amounts: 10, 100, 1000,..., depending on the coliform concentrations to be 

analyzed. For each dilution, six tubes were inoculated each with one mL of the diluted sample. 

They were incubated for 48 hours at 35°C and 44.5''C, respectively. The tubes with gas 

production were recorded as a positive reaction and those without gas production as negative. 

The Most Probable Number (MPN) Table [61], shown in Table 6, was used to calculate the 

MPN of coliforms and fecal coliforms in each sample. This table represents a statistical 

evaluation of the probability of finding a given number of organisms in a sample for any given 

series of results. For example, the number of tubes showing gas was 3 out of the 3 inoculated 

with the undiluted sample, 2 out of 3 inoculated with the 10'' dilution, 1 out of 3 inoculated 

Na lauryl sulfate 
Distilled Water 

Tryptose 
Lactose 
K2HPO4 
KH2PO4 
NaCl 

20.0 g 
5.0 g 

2.75 g 
2.75 g 

5.0 g 
0.1 g 

1000 mL 
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with the 10*^ dilution, and 0 out of 3 inoculated with the 10"' dilution. Listing the positive 

resuhs in order, gives 3-2-1-0. Choosing the three numbers in this series which just reach 0 (2-

1-0), use Table 6 to determine the MPN of coliforms in the original sample. Note that 2-1-0 

gives an MPN of 0.15 coliforms per inoculum (which was 1 mL for this dilution) of the middle 

dilution in that series, or 0.15 coliforms per mL at 1/10'^ dilution which equals 15 coliforms 

MPN/mL of the sample. 

Volatile Fatty Acids (VFA) 

VFA tests were conducted using a modified distillation approach [24], A sample of 

100 mL volume was taken from the reactor effluent and added to 100 mL of distilled water 

and 5 mL of concentrated sulfiiric acid. This solution was distilled on electric heating plate 

and condenser with 150 mL of the distillate collected and titrated to a pH value of 8.3 using 

0.1 N NaOH. The VFA of the sample was calculated as: 

VFA = VNaOH *(0-1)^60,000) 

V_p,c*(0.7) 

where: 

VFA = volatile fatty acid concentration in the sample, mg/L as acetic acid 

VNaOH= volume of 0.1 N NaOH used to titrate the sample to pH of 8.3, mL 

0.1 = normality of NaOH solution, equivalents/L 

60,000 = milliequivalent weight of acetic acid, mg/equivalent 

Vsample — volume of the sample taken from a reactor, 100 mL 

0.7 = assumption that 70% of the VFA's are accounted for by this method 
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Table 6. Three-tube most probable number (MPN) table [61] 

Combination MPN per inoculum Combination MPN per inoculum 
of positives of the middle dilution of positives ofthe middle dilution 

0-0-0 

0-1-0 

0-2-0 

1-0-0 

1-0-1 

1-1-0 

1-1-1 

1-2-0 

2-0-0 

2-0-1 

2-1-0 

2-1-1 

2-2-0 

2-2-1 

<0.03 

0.03 

0.062 

0.036 

0.072 

0.11 

0.11 

0.11 

0.09 

0.14 

0.15 

0.20 

0.21 

0.28 

2-3-0 

3-0-0 

3-0-1 

3-0-2 

3-1-0 

3-1-1 

3-1-2 

3-2-0 

3-2-1 

3-2-2 

3-3-0 

3-3-1 

3-3-2 

3-3-3 

0.29 

0.23 

0.39 

0.64 

0.43 

0.75 

1.20 

0.93 

1.50 

2.10 

2.40 

4.60 

11.00 

>24.00 
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Alkalinity 

Alkalinity was measured by a titration method. A certain volume of the sample was 

titrated to pH 4.5 using 0.1 N H2SO4. The alkalinity was calculated as; 

= v.no.i)n5o,ooo) 

V. 

where: 

Alk = alkalinity of the sample, mg/L expressed as CaCOs 

Va = volume of H2SO4 used to titrate sample to pH 4.5, mL 

0.1 = normality of H2SO4, equivalents/L 

50,000 = milliequivalent weight of CaCOs, mg/equivalent 

V5 = volume of the sample, mL 

pH 

The effluent pH was measured every three days. The influent pH was measured 

whenever a new batch of feed was prepared. All pH measurements were made using a pH 

meter, which was calibrated before each measurement using standard pH solutions of 7.00 and 

10.00. 

Biogas Composition Analysis 

The composition of the biogas produced from each reactor was determined by gas 

chromatography (GC) once every week. Samples were collected using a 1-mL syringe 
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(Hamilton Company, Reno, NY) equipped with metal hub needles (AUtech Associates, Inc., 

Deerfield, IL). A biogas sample of 0.9 mL was withdrawn from the gas sampling ports and the 

gas was then injected into the GC. The GC colunm used for the analysis detected relative 

proportions of nitrogen, methane, and carbon dioxide. The GC was calibrated using a custom-

made gas standard (Union Carbide Industrial Gases, Inc., Specialty Gas, East Chicago, IN) 

which contained 5% nitrogen, 70% methane, and 25% carbon dioxide. The characteristics of 

the GC are shown in Table 7. 

Table 7. GC parameters for biogas analysis 

Item Specification 

Gas chromatography Hewlett Packard 5730A 

Column 
Pacidng 
Temperature 

6 ft*0.125 in, stainless steel 
Porapak Q, 80/100 mesh size 
Ambient 

Carrier gas 
Flow rate 

Helium 
30 mL/minute 

Detector 
Temperature 

Thermal Conductivity 
200°C 

Injection block temperature 100°C 

Data station Maxima Data Station 
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Experimental Plan 

General Background 

The experiments in this study were designed to evaluate the effects of the temperature-

phased digestion system on volatile solids removal, pathogen destruction, and other 

operational features. The ultimate goal of the study was to operate the TP AD system at a 

range of SRTs and corresponding VS loadings, thus to determine the design and operating 

parameters. 

For comparison, a single-stage system was operated simultaneously. To determine the 

optimum volume ratio of the first stage to the second stage, two TP AD systems A and B were 

used, with volume ratios 2:5 and 1 ;5, respectively. 

The TS content of the feed sludge was adjusted to constant as 4%. Since the reactors 

used were CSTRs, the SRT was equal to the HRT. Thus, the different SRTs to the system 

were achieved by changing flow rate. The data were taken at each SRT when the system's 

performance was stable. The steady-state in this study is defined as a condition under which 

every parameter does not change significantly (+/- 10%) with time for a period of at least one 

week. Testing for steady-state performance was not conducted until two SRTs had passed 

after a change in SRT and VS loading. 

System Operation 

After accomplishment of start-up, each system was operated at its first designated 

SRT. For the two TP AD systems, a flow rate of 1.0 liter per day was used. The 
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corresponding SRTs for system A and B were 14 and 12 days, respectively. For the single-

stage system, an SRT of 24 days was operated and the corresponding flow rate was therefore 

0.58 liters per day. Each system was operated at an SRT until it reached steady-state. After 

data collection of each steady state performance, each system was applied to other SRTs by 

changing its flow rate. The working volume of each reactor maintained constant except for the 

two stage system B at an SRT of 11 days. In this run, the working volume of its first stage 

(R4) was adjusted from 2 to 1 liter. 

A mixture (mixture 1) of 1:1 (volume ratio) of PS to WAS was used for first set of 

runs at various SRTs. Then the WAS content was raised to 75%, i.e. 3:1 volume ratio of 

WAS to PS. For this mixture (mixture 2), only two systems; two-stage system A and single-

stage system, were used. 
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VL RESULTS AND DISCUSSION 

Results 

VS Loading Rates at Different SRTs 

By definition, VS loading is the mass flow rate of volatile solids per unit volume of the 

reactor. The corresponding mathematical formula is as following: 

VS loading rate = ^ (11) 

where: 

Q = flow rate, L/d 

Co = volatile solids concentration in influent, g/L 

V = volume of reactor, L 

In most cases, volume of reactor (V) is constant. Volatile solids loading rate is 

proportional to the flow rate and VS content in the feed sludge. In this study, the TS content 

of the feed sludge was adjusted to 4% and VS content varied only slightly from batch to batch 

in a range from 2.9 to 3.1%. Thus, as flow rate was raised and the SRT was reduced 

correspondingly, VS loading rate increased. The VS loading rates of each reactor at different 

SRTs are shown in Tables 8 and 9 for mixture 1 (1:1 volume ratio of PS to WAS) and 

mixture 2 (1:3 volume ratio of PS to WAS), respectively. The variations of VS loading vs. 

SRTs for mixture 1 and mixture 2 are also shown in Figures 9, 10, and 11, respectively. 
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Table 8. Volatile solids loadings at various SRTs for mixture 1 

Volatile solids loadings, g VS/L/day 

SRT or HRT Single-stage Two-stage A Two-stage B 
(days) 1st stage 2nd stage 1st stage 2nd stage 

11 29(1)* 2.7(10) 
12 15(2) 2.5(10) 
14 7.3(4) 2.1(10) 
17 10.5(2.7) 2.2(14.3) 
20 5.3(5.7) 1.9(14.3) 
24 1.2 7.3(4) 1.9(20) 
28 1.1 3.8(8) 1.8(20) 
34 0.9 
40 0.8 

* The SRT or HRT for each stage of the two-stage systems are shown in parentheses. 

Table 9. Volatile solids loadings at various SRTs for mixture 2 

Volatile solids loadings, g VS/L/day 

SRT or HRT Single-stage Two-stage A 
(days) (meso) 1st stage 2nd stage 

14 7.4(4) 2.2(10) 
20 5.2(5.7) 2.1(14.3) 
24 1.3 
28 1.1 3.9(8) 1.9(20) 
34 0.9 
40 0.8 

* The SRT or HRT for each stage of the two-stage system A are shown in parentheses. 



www.manaraa.com

55 

10 

Volatile 
Solids 

Loading 
(gVS/L/d) 

1st stage ol system A 

\ 
1 

2nd stage 
J 1 

» nr sysrpm a 
1 

/ Sin; vle-stage s y^stem 

*—1 1 

10 20 30 40 

Solids Retention Time, days 

50 

Figure 9. VS loading of single-stage and two-stage system A 
at different SRTs for mixture 1 
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Figure 10. VS loading of single-stage and two-stage system B at 
different SRTs for mixture 1 
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Figure 11. VS loading of single stage and two-stage system A at 
different SRTs for mixture 2 
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Volatile Solids Removal 

One of the main goals of anaerobic digestion is to destroy volatile solids in the 

incoming sludge. The percentage of volatile solids removal is most commonly used, which 

indicates the performance of the system. It can be calculated as following; 

VS removal (%) = ^ *100 (12) 
So 

where: 

So = volatile solids concentration in the influent, g/L 

Sc = volatile solids concentration in the effluent, g/L 

In general, VS removal depends on VS loading rate, SRT, bacterial concentration, 

temperature, and other factors. In most cases, SRT and VS loading are most important. For a 

certain VS loading, a longer SRT usually leads to an increase of VS removal. In this study, the 

SRTs applied varied from the shortest time of I day to the longest time of 40 days. Since 

higher SRTs were achieved by reducing flow rates, the VS loading rates were decreased 

corresponding to the flow rates. The relationships between volatile solids loading rates and 

SRTs in various operating conditions are shown in Figures 9, 10, and 11. 

Table 10 shows volatile solids removal of all three systems for mixture 1. For all of 

them, VS removal increases as SRT is extended. The VS removal of the conventional single-

stage system varied from 32.5 to 47.3% as the SRT increases from 24 to 40 days. Although 

VS destruction of both two-stage system A and B were a little bit higher than or as the same 

as those for single-stage system, the SRT required was much shorter than that used for single-

stage system. For two-stage system A, 45% VS removal was achieved at an SRT of 14 days. 
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Table 10. Volatile solids removal of each system at different SRTs for mixture 1 

System Q(L/d) SRT (day) Volatile solids (g/L) VS removal (%) System Q(L/d) SRT (day) 

Influent EfiQuent Stage System 

Single-stage 
system 

0.580 24 29.2 19.7 32.5 32.5 

Single-stage 
system 

0.500 28 30.1 18.0 40.2 40.2 Single-stage 
system 0.412 34 30.3 16.8 44.6 44.6 

Single-stage 
system 

0.350 40 29.8 15.7 47.3 47.3 

Two-stage 

system A 

1st stage 1.000 4.0 29.2 20.1 31.2 

44.9 

Two-stage 

system A 

2nd stage 1.000 10.0 20.1 16.1 19.9 44.9 

Two-stage 

system A 

1st stage 0.700 5.7 30.2 18.7 38.1 

48.0 
Two-stage 

system A 2nd stage 0.700 14.3 18.7 15.7 16.0 48.0 
Two-stage 

system A 

1st stage 0.500 8.0 30.3 17.6 41.9 
50.5 

Two-stage 

system A 

2nd stage 0.500 20.0 17.6 15.0 14.8 50.5 

Two-stage 
system B 

1st stage 1.000 1.0 29.2 25.8 11.6 

33.9 

Two-stage 
system B 

2nd stage 1.000 10.0 25.8 19.3 25.2 33.9 

Two-stage 
system B 

1st stage 1.000 2.0 29.5 23.6 20.0 
38.6 Two-stage 

system B 
2nd stage 1.000 10.0 23.6 18.1 23.3 38.6 Two-stage 

system B 1st stage 0.700 2.8 30.0 20.7 31.0 

42.0 

Two-stage 
system B 

2nd stage 0.700 14.2 20.7 17.4 15.9 42.0 

Two-stage 
system B 

1st stage 0.580 4.0 30.5 19.1 37.4 

46.2 

Two-stage 
system B 

2nd stage 0.580 20.0 19.1 16.4 14.1 46.2 
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As SRTs were from 14 to 28 days, the corresponding VS destruction was increased to 50%. 

Similar relationship between VS removal and SRT in two-stage system B was observed. The 

lowest SRT of 10 days was studied in system B. At this SRT, the VS removal was 34%. The 

VS removal rose to 46% as the SRT increased from 10 to 24 days. The variation of VS 

removal with respect to system SRT is shown in Figure 12. The individual performance in 

terms of VS removal of each stage of the two-stage system is shown in Figures 13 and 14. As 

the WAS content increased from 50% to 75% in mixture 2, the volatile solids removal of all 

systems went down, but the similar relationship between VS removal and SRT still maintained 

as shown in Table 11 and Figure 15. 

COD Removal 

Besides VS removal, COD removal is also widely used to show the degree of 

reduction of organic matter. For wastewater sludge. Volatile solids can be well measured than 

COD. The COD measurement is not so accurate as the VS measurement because the dilution 

is needed for COD analysis. However, COD data is still important. The main reason for 

measuring COD is that there is a clear relationship between COD removed and methane 

produced. The theoretical value is 0.35 liters of methane per gram of COD destroyed. In this 

study, when ever VS was measured, COD was also measured. The VS to COD ratios 

(VS/COD) of sludge samples from reactor effluent and influent were consistent in a range 
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Figure 12. Volatile solids removal of single-stage and two-stage 
systems at different SRTs for mixture 1 
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Figure 13. Volatile solids removal of each stage of two-stage 
system A at different SRTs for mixture 1 
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Figure 14. Volatile solids removal of each stage of system B at 
different SRTs for mixture 1 
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Table 11. Volatile solids removal of each system at diflferent SRTs for mixture 2 
System Q(L/d) SRT (day) Volatile solids (g/L) VS removal (%) System Q(L/d) SRT (day) 

Influent Effluent Stage System 

Single-stage 
system 

0.580 24 29.6 20.8 29.7 29.7 

Single-stage 
system 

0.500 28 30.2 18.8 37.7 37.7 Single-stage 
system 0.412 34 29.8 17.5 41.3 41.3 

Single-stage 
system 

0.350 40 30.1 16.5 45.2 45.2 

Two-stage 

system A 

1st stage 1.000 4.0 29.2 21.3 27.1 
41.4 

Two-stage 

system A 

2nd stage 1.000 10.0 21.3 17.1 19.7 41.4 

Two-stage 

system A 

1st stage 0.700 5.7 29.8 20.1 32.6 

45.3 
Two-stage 

system A 2nd stage 0.700 14.3 20.1 16.3 18.9 45.3 
Two-stage 

system A 

1st stage 0.500 8.0 30.2 18.9 37.4 

47.7 

Two-stage 

system A 

2nd stage 0.500 20.0 18.9 15.8 16.4 47.7 

Volatile 
Solids 

Removal 
(%) 

0 10 20 30 40 SO 
Solids Retention Time, days 

Figure 15. Volatile solids removal of single-stage and two-stage systems 
at different SRTs for mixture 1 and mixture 2 
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of 1.3 to 1.5. COD removal can be calculated in a similar way as VS removal as following; 

COD removal % = ——^*100 (13) 
Co 

where; 

Co = influent COD concentration, g/L 

Ce = effluent COD concentration, g/L 

The COD performance data are summerised in Tables 12 and 13 for mixture 1 and 

mixture 2, respectively. The variation of COD removal vs. SRT for each system was quite 

similar to result of VS removal vs. SRT. The resuks of COD removal at various SRTs at 

single vs. Two stage system A and B are shown in Figures 16, 17, and 18, respectively. 

Coliform and Fecal Coliform Destruction 

Both total and fecal coliform concentrations were measured at each SRT when the 

system reached steady-state. The destruction rate of total and fecal coliforms is calculated as 

following; 

Coliform Destruction Rate (%) = —^—-^*100 (14) 

where; 

Po = influent total or fecal coliform concentration, MPN/g TS 

Pe = effluent total or fecal coliform concentration, MPN/g TS 
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Table 12. COD removal of each system at different SRTs for mixture 1 
System Q SRT COD COD removal 

(L/d) (day) (g/L) (%) 
Influent EfQuent Stage System 

0.580 24.0 41.6 27.6 33.7 33.7 

Single-stage 0.500 28.0 39.6 23.9 39.6 39.6 

system 0.412 34.0 40.1 22.8 43.1 43.1 

0.350 40.0 41.2 22.6 45.1 45.1 

1st stage 1.000 4.0 40.3 28.9 28.3 

2nd stage 1.000 10.0 28.9 22.1 23.5 45.2 

Two-stage 1st stage 0.700 5.7 42.3 27.1 35.9 

system A 2nd stage 0.700 14.3 27.1 21.8 19.6 48.5 

1st stage 0.500 8.0 41.8 25.3 39.5 

2nd stage 0.500 20.0 25.3 20.6 18.6 50.7 

1st stage 1.000 1.0 41.8 36.8 12.0 

2nd stage 1.000 10.0 36.8 27.6 25.0 34.0 

1st stage 1.000 2.0 40.6 33.7 17.0 

Two-stage 2nd stage 1.000 10.0 33.7 24.8 26.4 38.9 

system B 1st stage 0.700 2.8 40.3 28.3 29.8 

2nd stage 0.700 14.2 28.3 22.7 19.8 43.7 

1st stage 0.580 4.0 41.5 26.1 37.1 

2nd stage 0.580 20.0 26.1 22.7 13.0 45.3 

Table 13. COD removal of each system at different SRTs for mixture 2 
System Q(L/d) SRT (day) COD(g/L) COD removal (%) System Q(L/d) SRT (day) 

Influent Effluent Stage System 

Single-stage 
system 

0.580 24 41.8 29.7 28.9 28.9 
Single-stage 

system 
0.500 28 42.9 26.5 38.2 38.2 Single-stage 

system 0.412 34 40.6 24.1 40.6 40.6 

Single-stage 
system 

0.350 40 42.7 23.8 44.4 44.4 

Two-stage 
system A 

1st stage 1.000 4.0 41.5 30.2 27.2 
41.9 

Two-stage 
system A 

2nd stage 1.000 10.0 30.2 24.1 20.2 41.9 
Two-stage 
system A 

1st stage 0.700 5.7 41.6 28.0 32.7 
45.2 

Two-stage 
system A 2nd stage 0.700 14.3 28.0 22.8 18.6 45.2 

Two-stage 
system A 

1 St stage 0.500 8.0 42.2 26.8 36.5 
47.2 

Two-stage 
system A 

2nd stage 0.500 20.0 26.8 22.3 16.8 47.2 
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Figure 16. COD removal of single-stage and two-stage systems 
at different SRTs for mixture 1 
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at different SRTs for mixture 1 
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The data of total coliform destruction for the single-stage and the two-stage systems are 

shown in Tables 14 and 15. For the single-stage system the total coliform destruction varied 

from 92.2 to 84.5% in an SRT range of 24 to 40 days. In contrast to the single-stage system, 

a much higher coliform destruction was achieved by the two-stage system. For two-stage 

system A, total coliform destruction rates were 99.999% or above for all SRTs tested. Similar 

result was also obtained for two-stage system B. The single-stage was able to only achieve 

around a one log or less reduction, i.e. 90% or less, of total coliforms. The mesophilic second-

stage of the two-stage system achieved also only one log or less destruction of total coliforms. 

The significantly high reduction up to 99.999% (5 log) was achieved by the thermophilic first-

stage. The total coliform concentrations and the destruction data of all three systems, two-

stage system A, and two-stage system B are shown in Figures 19, 20, and 21, respectively. At 

a system SRT of 14 days, as shown in Table 14, system A achieved a coliform destruction of 

99.9996%, with a destruction of99.999% in the first-stage. The lowest SRT used in the study 

was 11 days for the two-stage system B. At the system B, although the first-stage had only an 

SRT of one day, the total coliform destruction still maintained as high as 99.9996%. Table 15 

presents the total coliform destruction rates for mixture 2. They are quite similar to those 

shown in Table 14. There is no significant difference between mixture 1 and mixture 2 

regarding total coliform destruction. 

The corresponding fecal coliform destruction rates are shown in Tables 16, 17, and 

Figures 22, 23, 24, 25, and 26 for the single-stage system, the system A, and the system B, 

respectively. The single-stage system achieved only 90% (one log) or less fecal coliform. 
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Table 14. Total coliform destruction of each system at different SRTs for mixture 1 
System Q(L/d) SRT 

(day) 
Coliform 

(MPN/g TS) 
Coliform destruction (%) System Q(L/d) SRT 

(day) 
Influent EfiQuent Stage System 

Single-stage 

system 

0.580 24.0 1.62E-K)8 1.26E+07 92.20 92.20 

Single-stage 

system 

0.500 28.0 6.49E+07 1.96E+07 69.73 69.73 Single-stage 

system 0.412 34.0 2.48E+08 5.32E+07 78.57 78.57 
Single-stage 

system 
0.350 40.0 1.57E+08 2.44E-K)7 84.47 84.47 

Two-stage 

system A 

1st stage 1.000 4.0 4.02E-K)7 4.02E+02 99.99900 

99.99961 

Two-stage 

system A 

2nd stage 1.000 10.0 4.02E+02 1.56E+02 61.1 99.99961 

Two-stage 

system A 

1st stage 0.700 5.7 8.07E-H)7 1.60E+02 99.99980 

99.99990 
Two-stage 

system A 2nd stage 0.700 14.3 1.60E+02 7.74E+01 51.5 99.99990 
Two-stage 

system A 
1st stage 0.500 8.0 3.66E+07 2.44E-K)2 99.99933 

99.99974 

Two-stage 

system A 

2nd stage 0.500 20.0 2.44E+02 9.51E+01 61.0 99.99974 

Two-stage 

system B 

1st stage 1.000 1.0 1.27E-K)8 5.30E-K)2 99.99958 

99.99988 

Two-stage 

system B 

2nd stage 1.000 10.0 5.30E-K)2 1.55E+02 70.82 99.99988 

Two-stage 

system B 

1st stage 1.000 2.0 6.56E+07 2.82E+02 99.99957 

99.99970 Two-stage 

system B 

2nd stage 1.000 10.0 2.82E+02 1.97E+02 30.17 99.99970 Two-stage 

system B 1st stage 0.700 2.8 3.94E+08 4.01E+02 99.99990 

99.99997 

Two-stage 

system B 

2nd stage 0.700 14.2 4.01E+02 1.24E+02 69.1 99.99997 

Two-stage 

system B 

1st stage 0.580 4.0 1.63E+08 1.98E+02 99.99988 

99.99996 

Two-stage 

system B 

2nd stage 0.580 20.0 1.98E+02 6.52E+01 67.0 99.99996 

Table 15. Total coliform destruction of each system at different SRTs for mixture 2 
System Q SRT Coliform Coliform destruction 

(L/d) (day) (MPN/g TS) To) 
Influent Effluent Stage System 

0.580 24.0 1.02E+08 2.26E-K)7 77.84 77.84 
Single-stage 0.500 28.0 2.49E+07 9.63E+06 61.25 61.25 

system 0.412 34.0 9.83E+07 4.32E-K)7 56.05 56.05 
0.350 40.0 5.70E+07 3.44E-K)7 39.73 39.73 

1st stage 1.000 4.0 .02E+07 5.02E+02 99.99751 
2nd stage 1.000 10.0 5.02E+02 2.56E-K)2 48.92 99.99873 

Two-stage 1st stage 0.700 5.7 8.01E+06 3.60E-H)2 99.99551 
system A 2nd stage 0.700 14.3 3.60E+02 1.20E+02 66.50 99.99850 

1st stage 0.500 8.0 1.66E+07 4.44E+02 99.99733 
2nd stage 0.500 20.0 4.44E+02 9.71E+01 78.13 99.99942 
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Figure 19. Total colifonn destruction of two-stage system A 
at different SRTs for mixture 1 
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Figure 20. Total coliform destruction of two-stage system B 
at different SRTs for mixture 1 
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Figure 21. Total coliform destruction of the flrst stages of two-stage 
system A and B at different SRTs for mixture 1 
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Table 16. Fecal coliform destruction of each system at different SRTs for mixture 1 
System Q SRT Fecal coliform Fecal coliform destruction 

(L/d) (day) (MPN/g TS) /o) 

Influent EfSuent Stage System 

0.580 24.0 1.07E+07 1.26E+06 88.25 88.25* 

Single-stage 0.500 28.0 7.85E-K)6 7.94E+05 89.88 89.88* 

system 0.412 34.0 6.03E-K)7 7.94E-K)6 86.82 86.82* 

0.350 40.0 7.89E+06 8.51E+05 89.21 89.21* 

1st stage 1.000 4.0 6.22E-K)7 7.94E-K)1 99.99987 

2nd stage 1.000 lO.O 7.94E-H)1 6.31E-H)1 20.57 99.99990** 

Two-stage 1st stage 0.700 5.7 3.08E+07 1.26E-K)2 99.99959 

system A 2nd stage 0.700 14.3 1.26E+02 3.98E+01 68.38 99.99987** 

1st stage 0.500 8.0 2.09E+07 5.01E+01 99.99976 

2nd stage 0.500 20.0 5.01E+01 3.16E+01 36.90 99.99985** 

1st stage 1.000 1.0 3.98E+07 3.98E-K)2 99.99900 

2nd stage 1.000 10.0 3.98E+02 7.94E+01 80.05 99.99980** 

1st stage 1.000 2.0 6.31E-K)6 2.51E-K)2 99.99602 
Two-stage 2nd stage 1.000 10.0 2.51E+02 2.00E+01 92.05672 99.99968** 
system B 1st stage 0.700 2.8 I.02E+08 2.00E+02 99.99981 

2nd stage 0.700 14.2 2.00E+02 2.51E+01 87.41 99.99998** 
1st stage 0.580 4.0 l.OOE+07 1.58E+02 99.99842 
2nd stage 0.580 20.0 1.58E-K)2 1.26E-K)1 92.06 99.99987** 

* Do not meet 40 CFR Part 503 pathogen destruction criteria for Class A sludge 
** Meet 40 CFR Part 503 pathogen destruction criteria for Class A sludge 
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Table 17. Fecal coliform destruction of each system at diflferent SRTs for mixture 2 
System Q 

(L/d) 
SRT 
(day) 

Fecal coliform 
(MPN/g TS) 

Fecal coliform 
destruction 

(%) 

System Q 
(L/d) 

SRT 
(day) 

Influent EfQuent Stage System 

Single-stage 
system 

0.580 24.0 2.07E+07 4.26E-K)6 79.44 79.44* 

Single-stage 
system 

0.500 28.0 5.78E+06 9.14E-K)5 84.19 84.19* Single-stage 
system 0.412 34.0 3.03E+07 8.74E-K)6 71.10 71.10* 

Single-stage 
system 

0.350 40.0 2.89E+06 9.51E-K)5 67.07 67.07* 

Two-stage 
system A 

1st stage 1.000 4.0 3.22E+07 1.79E+02 99.99944 
99.99966** 

Two-stage 
system A 

2nd stage 1.000 10.0 1.79E+02 l.lOE+02 38.64 99.99966** 

Two-stage 
system A 

1st stage 0.700 5.7 2.08E+07 2.26E-K)2 99.99892 
99.99959** 

Two-stage 
system A 2nd stage 0.700 14.3 2.26E+02 8.58E+01 62.01 99.99959** 
Two-stage 
system A 

1st stage 0.500 8.0 1.09E+07 1.45E+02 99.99867 
99.99889** 

Two-stage 
system A 

2nd stage 0.500 20.0 1.45E+02 1.21E-K)2 16.88 99.99889** 

* Do not meet 40 CFR Part 503 pathogen destruction criteria for Class A sludge 
** Meet 40 CFR Part 503 pathogen destruction criteria for Class A sludge 
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Figure 22. Total coliform destruction of the two-stage system 
at different SRTs for mixture 1 and mixture 2 
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Figure 24. Fecal coliform destruction of two-stage system B 
at different SRTs for mixture 1 
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Figure 25. Fecal coliform destruction of the first stages of two-stage 
system A and B at different SRTs for mixture 1 
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Figure 26. Fecal coliform destruction of the two-stage system 
at different SRTs for mixture 1 and mixture 2 
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destruction, while the temperature-phased anaerobic digestion systems were able to achieve 

fecal coliform destruction up to 99.99998% (6 log). The lowest fecal coliform removal rate of 

the two-stage system was 99.99968%. The highest fecal coliform density in the eflQuent from 

the two-stage system, as shown in Table 16, was only 79 MPN/g TS, which occurred at an 

SRT of 11 days, with one day SRT for the first-stage. No significant difference in fecal 

coliform destruction was observed at different SRTs used in this study. Although the SRT for 

the first-stage of two-stage system B was as low as one day, the destruction rate for both total 

and fecal coliform did not drop as shown in Figures 21 and 25. Again no significant difference 

was observed for mixture 1 and 2 in terms of fecal coliform destruction. Not a single 

circumstance, did fecal coliform count in the effluents from the two-stage system exceed 

1,000 MPN/g TS. 

Methane Content and Daily Production Rate 

The biogas composition data are listed in Tables 18 and 19 for mixture 1 and mixture 

2, respectively. For single-stage system (mesophilic) the CH4 concentration of biogas varied in 

a range of 67 to 72% at SRTs from 24 to 40 days. The second stage (mesophilic) of the two-

stage system showed similar results for methane content, as shown in Figure 27. The methane 

content of the first stage (thermophilic) of the two-stage system was a little bit lower than that 

in the mesophilic units. It varied from 58 to 69% as shown in Table 18. The lowest methane 

content occured at a system SRT of 11 days, with one day SRT for the first stage, as shown in 

both Table 18 and Figure 27. 
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Daily methane production was shown in Tables 20 and 21 for mixture 1 and 2, 

respectively. The two-stage system showed higher methane production rate compared to the 

single-stage system. The higher methane production rate was caused by the higher volatile 

solids removal rate of the two-stage system. An optimum range of SRT of the two-stage 

system can be determined in terms of daily methane production rate and volatile solids 

removal rate. As shown in Figure 28, the optimum SRTs for the two-stage system was in a 

range from 11 to 17 days. In contrast, no clear peak of daily methane rate was observed for 

the single-stage system. Although the daily methane production rates showed significant 

variation between the single and two-stage systems and among different SRTs for each 

system, the methane production per gram of volatile solids destroyed are quite constant, 0.32 

to 0.35 STP iiters/g COD destroyed for both single- and two-stage systems and at all SRTs 

employed in the study. 

pH, Volatile Fatty Acids, and Alkalinity 

The pH, volatile fatty acids (VFA), and alkalinity of each system are shown in Tables 

22 and 23 for mixtures 1 and 2, respectively. For single-stage system pH varied from 7.3 to 

7.6, VFA varied from 170 to 200 mg/L as acetic acid, and alkalinity varied from 4,500 to 

5,500 mg/L as CaCOs. The lowest pH and alkalinity occurred at the shortest SRT of 24 days. 

The pH and alkalinity for the two-stage system showed a similar variation compared to the 

single-stage system. However, the VFA in the first stage of the two-stage system were much 

higher than that in either the single-stage system or the second stage of the two-stage systems. 
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Table 18. Biogas composition of each system at different SRTs for mixture 1 

System Q SRT CH4 CO2 N2 

(L/d) (day) (%) (%) (%) 

0.580 24.0 69.0 26 4 

Single-stage 0.500 28.0 71.0 24 5 

system 0.412 34.0 67.0 29 4 

0.350 40.0 72.0 25 3 

1st stage 1.000 4.0 65.0 30 5 

2nd stage 1.000 10.0 70.0 28 2 

Two-stage 1st stage 0.700 5.7 69.0 29 3 

system A 2nd stage 0.700 14.3 71.0 26 3 

1st stage 0.500 8.0 68.0 28 4 

2nd stage 0.500 20.0 71.0 25 4 

1st stage 1.000 1.0 58.0 37 5 

2nd stage 1.000 10.0 68.0 28 4 

1st stage 1.000 2.0 63.0 32 5 

Two-stage 2nd stage 1.000 10.0 67.0 29 4 

system B 1st stage 0.700 2.8 64.0 31 5 

2nd stage 0.700 14.2 70.0 27 3 

1st stage 0.580 4.0 67.0 29 4 
2nd stage 0.580 20.0 71.0 26 3 

Table 19. Biogas composition of each system at different SRTs for mixture 2 
Q SRT CH, CO2 N2 

a/d) (day) (%) (%) (%) 
0.580 24.0 71 25 4 

Single-stage 0.500 28.0 72 23 5 
system 0.412 34.0 71 26 3 

0.350 40.0 74 23 3 
1st stage 1.000 4.0 66 29 5 
2nd stage 1.000 10.0 70 27 3 

Two-stage 1st stage 0.700 5.7 69 28 3 
system A 2nd stage 0.700 14.3 71 26 3 

1st stage 0.500 8.0 70 26 4 
2nd stage 0.500 20.0 72 24 4 
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Table 20. Daily methane production of each system at different SRTs for mixture 1 

System Q SRT Daily Methane System Daily Methane 

(L/d) (day) (STP L/d) (STP L/d) 

0.580 24.0 2.75 2.75 

Single-stage 0.500 28.0 2.85 2.85 

system 0.412 34.0 2.57 2.57 

0.350 40.0 2.45 2.45 

1st stage 1.000 4.0 3.95 

2nd stage 1.000 10.0 2.40 6.35 

Two-stage 1st stage 0.700 5.7 3.68 

system A 2nd stage 0.700 14.3 1.07 4.75 

1st stage 0.500 8.0 2.86 

2nd stage 0.500 20.0 0.74 3.60 

1st stage 1.000 1.0 1.70 

2nd stage 1.000 10.0 3.10 4.80 

1st stage 1.000 2.0 2.50 

Two-stage 2nd stage 1.000 10.0 3.00 5.50 

system B 1st stage 0.700 2.8 2.90 
2nd stage 0.700 14.2 1.15 4.05 

1st stage 0.580 4.0 2.75 

2nd stage 0.580 20.0 0.65 3.40 

Table 21. Daily methane production of each system at different SRTs for mixture 2 
System Q 

(L/d) 
SRT 
(day) 

Daily Methane 
(STP L/d) 

System Daily Methane 
(STP L/d) 

Single-stage 
system 

0.580 24.0 2.41 2.41 
Single-stage 

system 
0.500 28.0 2.83 2.83 Single-stage 

system 0.412 34.0 2.32 2.32 

Single-stage 
system 

0.350 40.0 2.25 2.25 

Two-stage 
system A 

1st stage 1.000 4.0 3.89 
6.00 

Two-stage 
system A 

2nd stage 1.000 10.0 2.11 6.00 
Two-stage 
system A 

1st stage 0.700 5.7 3.28 
4.53 

Two-stage 
system A 2nd stage 0.700 14.3 1.25 4.53 

Two-stage 
system A 

1st stage 0.500 8.0 2.64 
3.39 

Two-stage 
system A 

2nd stage 0.500 20.0 0.75 3.39 
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Figure 27. Methane content of the biogas from each stage of the 
system at different SRTs for mixture 1 
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Figure 28. Daily methane production of single-stage and two-
stage system at different SRTs for mixture 1 
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Table 22. pH, VFA, and Alkalinity of each system at different SRTs for mixture 1 

System Q 
(L/d) 

SRT 
(day) 

pH VFA, as acetic 
(mg/L) 

Alkalinity, as CaCOs 
(mg/L) 

Single-stage 
system 

0.580 24.0 7.3 180 4500 

Single-stage 
system 

0.500 28.0 7.4 200 4800 Single-stage 
system 0.412 34.0 7.4 195 5100 

Single-stage 
system 

0.350 40.0 7.6 170 5500 

Two-stage 

system A 

1st stage 1.000 4.0 7.2 1360 4700 

Two-stage 

system A 

2nd stage 1.000 10.0 7.4 210 5000 

Two-stage 

system A 

1st stage 0.700 5.7 7.3 1010 5100 Two-stage 

system A 2nd stage 0.700 14.3 7.4 200 5300 
Two-stage 

system A 
1st stage 0.500 8.0 7.4 800 5000 

Two-stage 

system A 

2nd stage 0.500 20.0 7.5 190 5300 

Two-stage 

system B 

1st stage 1.000 l.O 7.1 2150 4200 

Two-stage 

system B 

2nd stage 1.000 10.0 7.3 230 4800 

Two-stage 

system B 

1st stage 1.000 2.0 7.2 1730 4500 

Two-stage 

system B 

2nd stage 1.000 10.0 7.3 180 5100 Two-stage 

system B 1st stage 0.700 2.8 7.2 1350 4500 

Two-stage 

system B 

2nd stage 0.700 14.2 7.4 190 5300 

Two-stage 

system B 

1st stage 0.580 4.0 7.3 1080 4800 

Two-stage 

system B 

2nd stage 0.580 20.0 7.5 160 5600 

Table 23. pH, VFA, and Alkalinity of each system at dif erent SRTs for mixture 2 
System Q 

(L/d) 
SRT 
(day) 

pH VFA, as acetic 
(mg/L) 

Alkalinity, as CaCOs 
(mg/L) 

Single-stage 
system 

0.580 24.0 7.4 190 5100 
Single-stage 

system 
0.500 28.0 7.5 170 5600 Single-stage 

system 0.412 34.0 7.6 150 5800 

Single-stage 
system 

0.350 40.0 7.6 160 6100 
1st stage 1.000 4.0 7.3 1200 5000 
2nd stage 1.000 10.0 7.6 190 5200 

Two-stage 1st stage 0.700 5.7 7.4 910 5200 
system A 2nd stage 0.700 14.3 7.5 170 5400 

1st stage 0.500 8.0 7.5 700 5100 
2nd stage 0.500 20.0 7.6 150 5600 
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At the shortest SRT of one day for the first stage of two-stage system B, as shown in both 

Table 22 and Figure 29, VFA level reached 1,360 mg/L as acetic acid. As the SRT was 

longer, the VFA concentration decreased. The lowest VFA of mg/L 800 for mixture 1 and 

700 mg/L for mixture 2 was observed at the same SRT of 8 days in the first stage of the two-

stage system A, as shown in Table 22, Table 23, and Figure 30, respectively. Although the 

VFA in the first stage of the two-stage system were several times higher than that in the 

single-stage system, the VFA in the second stage of the two-stage system were as low as that 

in the single-stage system. PH values in each reactor varied in a range fi-om 7.0 to 7.6, as 

shown in Figure 31. Even when SRT of the first stage of the two-stage system B was as low 

as one day, the pH was still above 7.0. The relatively high alkalinity in the system helped the 

system maintain its pH values above 7.0. The alkalinity concentrations in all the systems varied 

from 4200 to 5600 mg/L as CaCOs, as shown in Table 22 and Figure 32. In general, alkalinity 

went down as the SRT became short. At an SRT of one day, the first stage of two-stage 

system B reached the lowest alkalinity in this study (4200 mg/L as CaCOs). 



www.manaraa.com

89 

2500 

2000 

Volatile jggo 
Fatty Acids, 

as Acetic 
(mg/L) 1000 

500 

0 

1st stage of two-stage B 

1st stage of two-stage A 

2nd stage of B 

2nd stage of A 
Single-stage system 

10 20 30 40 
Solids Retention Time, days 

50 

Figure 29. Volatile fatty acids concentrations in each stage of single-
stage and two-stage systems at different SRTs for mixture 1 
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at different SRTs for mixture 1 
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Discussion 

In this study, the results show that for the same volatile solids removal, SRTs required for 

conventional single-stage system are much longer than those for two-stage systems. The main 

reason of shorter SRTs required for the two-stage system is that the thermophilic first stage of 

the two-stage system was able to enhance the hydrolysis of waste activated sludge, which 

made waste activated sludge available for acidogenic and methanogenic bacteria. The 

arrangement of two reactors in series, with the thermophilic unit as the first stage and the 

mesophilic unit as the second stage, can fiilly take advantages of both thermophilic and 

mesophilic digesters. The thermophilic unit has a higher temperature and higher VS loading, 

and therefore a higher VS cfestruction rate. Since the volume of the first stage is not large and 

the HRT is not long, the effluent fi-om the first stage contains high VFAs. The second 

mesophilic stage was able to convert those acids to methane and carbon dioxide. This 

phenomenon is illustrated in Figure 29. Although the VFAs are as high as 2,150 mg/L as 

acetic acid in the thermophilic first stage, they reduced to approximately 200 mg/L as acetic, 

in the second stage of the two-stage systems. Also the thermophilic stage played a main role in 

the high destruction of both total and fecal coliforms, as shown in Figures 19, 20, 21, 22, 23, 

24, 25, and 26. The single-stage and the second stage of the temperature-phased system (both 

mesophilic) achieved only less than one log (90%) reduction in both total and fecal coliforms. 

In contrast, the first stage of the temperature-phased system (thermophilic) achieved a 5-6 log 

(99.999-99.9999%) reduction of both total and fecal coliforms. No significant difference was 

observed in terms of coliform destruction under all SRTs applied in this study. This implies 
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that coliform destruction is mainly a function of temperature. In previous research, SRTs 

equal to or greater than 10 days have been reported for thermophilic digestion (Garber, 1975 

and Lee, 1989). In this study, the SRT of the thermophilic unit was reduced to only one day, 

when the total system SRT was 11 days. Data presented in Figures 24 and 25 showed that 

coliform destruction can be maintained to the same degree at this low SRT. The highest fecal 

coliform concentration in the eflQuent from the temperature-phased system was only 121 

MPN/g TS, as shown in Table 17. 

A possible shortcoming of the temperature-phased anaerobic digestion system is the 

potentially higher energy requirements for heating thermophilic stage. However, for equal VS 

destruction, the volume of the temperature-phased system can be as low as 50%, or less, of a 

comparable single-stage mesophilic system, as shown in Figure 9. Heat losses through the 

reactor surfaces can be minimized by smaller reactor volume required by a two-stage system. 

Also, as illustrated in Figure 28, the two-stage system can achieve a significant increase in 

methane production, compared to the single-stage system. More energy can be recovered 

from the two-stage system, which compensates for any added energy requirements of 

thermophilic digestion. The reduction of foaming by using two-stage system can also reduce 

operating problems. 

Many conventional digesters now operating in the U.S. can not meet Class A fecal 

coliform requirements for biosolids disposal. Temperature-phased anaerobic digestion (two-

stage) system can meet the Class A biosolids fecal coliform requirement. Foaming is also a 

problem when treating waste activated sludge. This study suggests that a two-stage system 
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may be a good alternative for solving these problems. Conventional single-stage systems could 

be modified to two-stage systems by putting a thermophilic anaerobic digester in front of an 

existing digester. In practice, it would appear advisable to place an effluent heat exchanger on 

the first-stage thermophilic reactor. This approach will reduce the temperature of the 

thermophilic effluent to the optimum mesophilic level and recover a portion of the energy 

used in raising the temperature of the incoming sludge to the thermophilic level. 
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V. CONCLUSIONS 

on this research, the following conclusions are evident: 

The temperature-phased anaerobic digestion process is capable of achieving almost 

complete destruction of fecal coliforms over a range of SRTs from 11 to 28 days 

producing a digested sludge that meets 40 CFR, Part 503 coliform requirements for 

Class A sludge. 

Although SRTs could be longer, the optimal SRT of the temperature-phased 

system exists in the range from 11 to 17 days. At those SRTs the capacity of VS 

removal of the temperature-phased anaerobic digestion system was more than 

double that of the conventional single-stage system. 

For equal volatile solids destruction when treating 50-50 mixtures of PS and WAS, 

the volume of the temperature-phased anaerobic digestion system (two-phase 

system) is approximately 40% of that required for single-stage mesophiiic digesters. 

The temperature-phased anaerobic digestion system applied to waste activated 

sludge digestion offers the advantages of each of the thermophilic and mesophiiic 

processes while avoiding the disadvantages of each process, such as the odors and 

instability associated with thermophilic digestion and the lower rates of VS and 

pathogen destruction and serious foaming associated with mesophiiic digestion. 
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APPENDIX A. 

TIME PERIOD AND DAILY BIOGAS PRODUCTION FOR 50:50 PS AND WAS 
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Table 24. Time period of the first run test for mixture 1 

System Q(L/d) SRT (days) Time period 

0.580 24 2/16/95 to 4/4/95 

Single-stage 0.500 28 4/5/95 to 5/30/95 

system 0.412 34 5/31/95 to 8/6/95 

0.350 40 8/7/95 to 10/25/95 

Two-stage 1.000 14 2/16/95 to 4/12/95 

system A 0.700 20 4/13/95 to 7/1/95 
0.500 28 7/2/95 to 10/25/95 
1.000 11 2/16/95 to 3/31/95 

Two-stage 1.000 12 4/1/95 to 5/18/95 

system B 0.700 17 5/19/95 to 7/25/95 

0.580 24 7/26/95 to 10/25/95 
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Table 25. Daily biogas production of single-stage system at different SRTs for mixture 1 

Date SRT Biogas 
(days) (STP L/d) 

2/16/95 24 3.8 
2/17/95 24 3.7 
2/18/95 24 3.8 
2/19/95 24 3.5 
2/20/95 24 3.6 
2/21/95 24 3.8 
2/22/95 24 3.8 
2/23/95 24 3.8 
2/24/95 24 3.7 
2/25/95 24 3.8 
2/26/95 24 3.8 
2/27/95 24 3.8 
2/28/95 24 3.5 
3/1/95 24 3.9 
3/2/95 24 4.0 
3/3/95 24 4.0 
3/4/95 24 4.1 
3/5/95 24 4.0 
3/6/95 24 4.2 
3/7/95 24 3.9 
3/8/95 24 4.0 
3/9/95 24 4.0 
3/10/95 24 4.1 
3/11/95 24 3.8 
3/12/95 24 4.0 
3/13/95 24 4.0 
3/14/95 24 4.0 
3/15/95 24 4.0 
3/16/95 24 4.1 
3/17/95 24 3.9 
3/18/95 24 4.0 
3/19/95 24 4.0 
3/20/95 24 4.0 
3/21/95 24 4.0 
3/22/95 24 4.0 
3/23/95 24 4.0 
3/24/95 24 4.0 
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3/25/95 24 4.0 

3/26/95 24 4.0 

3/27/95 24 4.0 

3/28/95 24 4.0 

3/29/95 24 4.0 

3/30/95 24 4.0 

3/31/95 24 4.0 

4/1/95 24 4.0 

4/2/95 24 4.0 

4/3/95 24 4.0 

4/4/95 24 4.0 

4/5/95 28 4.1 

4/6/95 28 4.1 

4/7/95 28 4.1 

4/8/95 28 4.2 

4/9/95 28 4.3 

4/10/95 28 4.1 

4/11/95 28 4.2 

4/12/95 28 4.1 

4/13/95 28 4.1 

4/14/95 28 4.2 

4/15/95 28 4.3 

4/16/95 28 4.1 

4/17/95 28 4.1 

4/18/95 28 4.2 

4/19/95 28 4.1 

4/20/95 28 4.1 

4/21/95 28 4.2 

4/22/95 28 4.2 

4/23/95 28 4.3 

4/24/95 28 4.2 
4/25/95 28 4.1 
4/26/95 28 4.1 
4/27/95 28 4.2 

4/28/95 28 4.2 
4/29/95 28 4.1 
4/30/95 28 4.3 
5/1/95 28 4.3 
5/2/95 28 4.1 
5/3/95 28 4.2 
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5/4/95 28 4.3 

5/5/95 28 4.2 

5/6/95 28 4.1 

5/7/95 28 4.2 

5/8/95 28 4.1 

5/9/95 28 4.3 

5/10/95 28 4.4 

5/11/95 28 4.2 

5/12/95 28 4.1 

5/13/95 28 4.1 

5/14/95 28 4.2 

5/15/95 28 4.3 

5/16/95 28 4.2 

5/17/95 28 4.1 

5/18/95 28 4.2 

5/19/95 28 4.3 

5/20/95 28 4.2 

5/21/95 28 4.3 

5/22/95 28 4.1 

5/23/95 28 4.1 

5/24/95 28 4.2 

5/25/95 28 4.3 

5/26/95 28 4.3 

5/27/95 28 4.2 

5/28/95 28 4.2 

5/29/95 28 4.3 

5/30/95 28 4.2 

5/31/95 34 3.9 

6/1/95 34 3.9 

6/2/95 34 3.9 
6/3/95 34 3.8 
6/4/95 34 3.9 

6/5/95 34 3.9 
6/6/95 34 3.7 
6/7/95 34 3.9 
6/8/95 34 3.7 

6/9/95 34 3.8 

6/10/95 34 3.6 

6/11/95 34 3.8 

6/12/95 34 3.8 
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6/13/95 34 3.8 

6/14/95 • 34 3.8 

6/15/95 34 3.7 

6/16/95 34 3.6 

6/17/95 34 3.9 

6/18/95 34 3.8 

6/19/95 34 3.8 

6/20/95 34 3.8 

6/21/95 34 3.8 

6/22/95 34 3.7 

6/23/95 34 3.7 

6124195 34 3.8 

6/25/95 34 3.8 

6/26/95 34 3.7 

6/27/95 34 3.7 

6/28/95 34 3.8 

6/29/95 34 3.8 

6/30/95 34 3.7 

7/1/95 34 3.6 

7/2/95 34 3.8 

7/3/95 34 3.8 

7/4/95 34 3.8 

7/5/95 34 3.7 

7/6/95 34 3.8 

7/7/95 34 3.7 

7/8/95 34 3.8 

7/9/95 34 3.8 

7/10/95 34 3.8 

7/11/95 34 3.8 

7/12/95 34 3.8 

7/13/95 34 3.7 

7/14/95 34 3.7 

7/15/95 34 3.8 
7/16/95 34 3.8 

7/17/95 34 3.8 
7/18/95 34 3.8 
7/19/95 34 3.8 

7/20/95 34 3.7 
7/21/95 34 3.7 

7/22/95 34 3.7 
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7/23/95 34 3.7 

7/24/95 34 3.8 

7/25/95 34 3.7 

7/26/95 34 3.7 

7/27/95 34 3.7 

7/28/95 34 3.7 

7/29/95 34 3.8 

7/30/95 34 3.7 

7/31/95 34 3.7 

8/1/95 34 3.7 

8/2/95 34 3.7 

8/3/95 34 3.8 

8/4/95 34 3.6 

8/5/95 34 3.7 

8/6/95 34 3.7 

8/7/95 40 3.7 

8/8/95 40 3.7 

8/9/95 40 3.7 

8/10/95 40 3.7 

8/11/95 40 3.7 

8/12/95 40 3.7 

8/13/95 40 3.7 

8/14/95 40 3.7 

8/15/95 40 3.7 

8/16/95 40 3.8 

8/17/95 40 3.7 

8/18/95 40 3.6 

8/19/95 40 3.6 

8/20/95 40 3.5 

8/21/95 40 3.6 

8/22/95 40 3.6 
8/23/95 40 3.6 
8/24/95 40 3.5 
8/25/95 40 3.6 
8/26/95 40 3.6 
8/27/95 40 3.6 
8/28/95 40 3.7 

8/29/95 40 3.6 

8/30/95 40 3.6 
8/31/95 40 3.5 
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9/1/95 40 3.6 

9/2/95 40 3.6 

9/3/95 40 3.6 

9/4/95 40 3.5 

9/5/95 40 3.6 

9/6/95 40 3.6 

9/7/95 40 3.7 

9/8/95 40 3.6 

9/9/95 40 3.6 

9/10/95 40 3.6 

9/11/95 40 3.5 

9/12/95 40 3.6 

9/13/95 40 3.6 

9/14/95 40 3.8 

9/15/95 40 3.6 

9/16/95 40 3.6 

9/17/95 40 3.6 

9/18/95 40 3.6 

9/19/95 40 3.6 

9/20/95 40 3.7 

9/21/95 40 3.6 

9/22/95 40 3.6 

9/23/95 40 3.5 

9/24/95 40 3.6 

9/25/95 40 3.6 

9/26/95 40 3.6 

9/27/95 40 3.6 

9/28/95 40 3.6 

9/29/95 40 3.6 

9/30/95 40 3.6 

10/1/95 40 3.6 

10/2/95 40 3.5 

10/3/95 40 3.6 

10/4/95 40 3.6 

10/5/95 40 3.6 
10/6/95 40 3.5 
10/7/95 40 3.6 
10/8/95 40 3.6 
10/9/95 40 3.6 

10/10/95 40 3.7 
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10/11/95 40 3.6 

10/12/95 40 3.6 

10/13/95 40 3.6 

10/14/95 40 3.6 

10/15/95 40 3.6 

10/16/95 40 3.5 

10/17/95 40 3.6 

10/18/95 40 3.6 

10/19/95 40 3.6 

10/20/95 40 3.6 

10/21/95 40 3.4 

10/22/95 40 3.6 

10/23/95 40 3.6 

10/24/95 40 3.6 

10/25/95 40 3.6 
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Table 26. Daily biogas production of two-stage system A at different SRTs for mixture 1 

Date First-stage Second-stage Sys tem 

SRT Biogas SRT Biogas SRT Biogas 

(days) (STP L/d) (days) (STP L/d) (days) (STP L/d) 

2/16/95 4 5.7 10 3.4 14 9.1 

2/17/95 4 5.7 10 3.4 14 9.1 

2/18/95 4 5.7 10 3.4 14 9.1 

2/19/95 4 5.7 10 3.4 14 9.1 

2/20/95 4 5.7 10 3.4 14 9.1 

2/21/95 4 5.6 10 3.4 14 9.0 

2/22/95 4 5.7 10 3.4 14 9.1 

2/23/95 4 5.6 10 3.4 14 9.0 

2/24/95 4 5.7 10 3.4 14 9.1 

2/25/95 4 5.7 10 3.5 14 9.2 

2/26/95 4 5.7 10 3.5 14 9.2 

2/27/95 4 5.7 10 3.5 14 9.2 

2/28/95 4 5.7 10 3.5 14 9.2 

3/1/95 4 5.5 10 3.5 14 9.0 

3/2/95 4 5.7 10 3.5 14 9.2 

3/3/95 4 5.7 10 3.5 14 9.2 

3/4/95 4 5.7 10 3.5 14 9.2 

3/5/95 4 5.8 10 3.5 14 9.3 

3/6/95 4 5.7 10 3.5 14 9.2 

3/7/95 4 5.8 10 3.5 14 9.3 

3/8/95 4 5.8 10 3.5 14 9.3 

3/9/95 4 5.8 10 3.5 14 9.3 

3/10/95 4 5.8 10 3.5 14 9.3 

3/11/95 4 5.8 10 3.5 14 9.3 

3/12/95 4 5.7 10 3.5 14 9.2 

3/13/95 4 5.8 10 3.5 14 9.3 

3/14/95 4 5.8 10 3.5 14 9.3 

3/15/95 4 5.8 10 3.5 14 9.3 

3/16/95 4 5.8 10 3.5 14 9.3 

3/17/95 4 5.6 10 3.5 14 9.1 

3/18/95 4 5.8 10 3.5 14 9.3 
3/19/95 4 5.7 10 3.5 14 9.2 

3/20/95 4 5.8 10 3.5 14 9.3 

3/21/95 4 5.8 10 3.5 14 9.3 
3/22/95 4 5.8 10 3.5 14 9.3 

3/23/95 4 5.8 10 3.5 14 9.3 
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3/24/95 4 5.8 10 3.5 14 9.3 

3/25/95 4 5.8 10 3.5 14 9.3 

3/26/95 4 5.7 10 3.5 14 9.2 

3/27/95 4 5.7 10 3.5 14 9.2 

3/28/95 4 5.7 10 3.5 14 9.2 

3/29/95 4 5.7 10 3.5 14 9.2 

3/30/95 4 5.8 10 3.5 14 9.3 

3/31/95 4 5.7 10 3.5 14 9.2 

4/1/95 4 5.7 10 3.5 14 9.2 

Aims 4 5.9 10 3.5 14 9.4 

4/3/95 4 5.7 10 3.5 14 9.2 

4/4/95 4 5.7 10 3.5 14 9.2 

4/5/95 4 5.8 10 3.5 14 9.3 

4/6/95 4 5.7 10 3.5 14 9.2 

4/7/95 4 5.8 10 3.5 14 9.3 

4/8/95 4 5.8 10 3.5 14 9.3 

4/9/95 4 5.8 10 3.5 14 9.3 

4/10/95 4 5.8 10 3.5 14 9.3 

4/11/95 4 5.8 10 3.5 14 9.3 

4/12/95 4 5.8 10 3.5 14 9.3 

4/13/95 5.7 5.6 14.3 3.3 20 8.9 

4/14/95 5.7 5.6 14.3 3.3 20 8.9 

4/15/95 5.7 5.6 14.3 3.3 20 8.9 

4/16/95 5.7 5.6 14.3 3.3 20 8.9 

4/17/95 5.7 5.6 14.3 3.2 20 8.8 

4/18/95 5.7 5.5 14.3 3.2 20 8.7 

4/19/95 5.7 5.5 14.3 3.2 20 8.7 

4/20/95 5.7 5.5 14.3 2.8 20 8.3 

4/21/95 5.7 5.5 14.3 2.5 20 8.0 

4/22/95 5.7 5.5 14.3 2.4 20 7.9 

4/23/95 5.7 5.4 14.3 2.4 20 7.8 

4/24/95 5.7 5.4 14.3 2.1 20 7.5 

4/25/95 5.7 5.4 14.3 2.1 20 7.5 

4/26/95 5.7 5.4 14.3 2.1 20 7.5 

4/27/95 5.7 5.4 14.3 2.0 20 7.4 

4/28/95 5.7 5.4 14.3 2.0 20 7.4 

4/29/95 5.7 5.4 14.3 1.8 20 7.2 

4/30/95 5.7 5.4 14.3 1.8 20 7.2 

5/1/95 5.7 5.3 14.3 1.8 20 7.1 

5/2/95 5.7 5.3 14.3 1.8 20 7.1 
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5/3/95 
5/4/95 
5/5/95 
5/6/95 
5/7/95 
5/8/95 
5/9/95 
5/10/95 
5/11/95 
5/12/95 
5/13/95 
5/14/95 
5/15/95 
5/16/95 
5/17/95 
5/18/95 
5/19/95 
5/20/95 
5/21/95 
5/22/95 
5/23/95 
5/24/95 
5/25/95 
5/26/95 
5/27/95 
5/28/95 
5/29/95 
5/30/95 
5/31/95 
6/1/95 
6/2/95 
6/3/95 
6/4/95 
6/5/95 
6/6/95 
6/7/95 
6/8/95 
6/9/95 
6/10/95 
6/11/95 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 
5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 
5.7 5.3 
5.7 5.3 

5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 

5.7 5.3 

5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 

108 

14.3 1.7 

14.3 1.7 

14.3 1.7 

14.3 1.7 

14.3 1.6 

14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 

14.3 1.6 

14.3 1.6 

14.3 1.7 

14.3 1.7 

14.3 1.7 
14.3 1.7 
14.3 1.7 
14.3 1.6 
14.3 1.6 
14.3 1.6 

14.3 1.6 
14.3 1.6 

14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.5 
14.3 1.6 
14.3 1.6 
14.3 1.6 
14.3 1.7 
14.3 1.6 

20 7.0 

20 7.0 

20 7.0 

20 7.0 
20 6.9 

20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 

20 6.9 

20 7.0 
20 7.0 

20 7.0 
20 7.0 
20 7.0 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 

20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.9 
20 6.8 
20 6.9 
20 6.9 
20 6.9 
20 7.0 
20 6.9 
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6/12/95 
6/13/95 
6/14/95 
6/15/95 
6/16/95 
6/17/95 
6/18/95 
6/19/95 
6/20/95 
6/21/95 
6/22/95 
6/23/95 
6/24/95 
6/25/95 
6/26/95 
6/27/95 
6/28/95 
6/29/95 
6/30/95 
7/1/95 
7/2/95 
7/3/95 
7/4/95 
7/5/95 
7/6/95 
7/7/95 
7/8/95 
7/9/95 
7/10/95 
7/11/95 
7/12/95 
7/13/95 
7/14/95 
7/15/95 
7/16/95 
7/17/95 
7/18/95 
7/19/95 
7/20/95 
7/21/95 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 

5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 

5.7 5.3 
5.7 5.3 
5.7 5.3 

5.7 5.3 
5.7 5.3 
5.7 5.3 
5.7 5.3 
8 4.8 

8 4.7 
8 4.6 
8 4.3 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 
8 4.2 

109 

14.3 1.6 

14.3 1.6 

14.3 1.6 

14.3 1.6 

14.3 1.5 

14.3 1.6 

14.3 1.6 

14.3 1.6 

14.3 1.7 

14.3 1.6 

14.3 1.6 

14.3 1.6 

14.3 1.6 

14.3 1.5 

14.3 1.6 

14.3 1.6 

14.3 1.5 

14.3 1.6 

14.3 1.6 

14.3 1.6 

20 1.4 
20 1.3 

20 1.2 
20 1.1 
20 1.1 
20 1.1 
20 1.1 

20 1.1 

20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.1 

20 6.9 

20 6.9 

20 6.9 

20 6.9 

20 6.8 

20 6.9 

20 6.9 

20 6.9 

20 7.0 

20 6.9 

20 6.9 

20 6.9 
20 6.9 

20 6.8 
20 6.9 
20 6.9 

20 6.8 

20 6.9 

20 6.9 
20 6.9 
28 6.2 
28 6.0 

28 5.8 
28 5.4 

28 5.3 

28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
28 5.3 
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7/22/95 8 4.2 20 1.1 28 5.3 

7/23/95 8 4.2 20 1.2 28 5.4 

7/24/95 8 4.1 20 1.1 28 5.2 

7/25/95 8 4.1 20 1.1 28 5.2 

7/26/95 8 4.1 20 1.1 28 5.2 

7/27/95 8 4.1 20 1.2 28 5.3 

7/28/95 8 4.1 20 1.1 28 5.2 

1119195 8 4.1 20 1.1 28 5.2 

7/30/95 8 4.1 20 1.1 28 5.2 

7/31/95 8 4.1 20 1.3 28 5.4 

8/1/95 8 4.1 20 1.1 28 5.2 

8/2/95 8 4.2 20 1.1 28 5.3 

8/3/95 8 4.2 20 1.2 28 5.4 

8/4/95 8 4.2 20 1.1 28 5.3 

8/5/95 8 4.2 20 l . l  28 5.3 

8/6/95 8 4.2 20 1.1 28 5.3 

8/7/95 8 4.2 20 1.2 28 5.4 

8/8/95 8 4.2 20 1.1 28 5.3 

8/9/95 8 4.2 20 1.1 28 5.3 

8/10/95 8 4.2 20 1.3 28 5.5 

8/11/95 8 4.2 20 1.1 28 5.3 

8/12/95 8 4.2 20 1.1 28 5.3 

8/13/95 8 4.2 20 1.0 28 5.2 

8/14/95 8 4.2 20 1.1 28 5.3 

8/15/95 8 4.2 20 1.1 28 5.3 

8/16/95 8 4.2 20 1.1 28 5.3 

8/17/95 8 4.2 20 1.2 28 5.4 

8/18/95 8 4.2 20 1.1 28 5.3 

8/19/95 8 4.2 20 1.1 28 5.3 

8/20/95 8 4.2 20 1.3 28 5.5 

8/21/95 8 4.2 20 1.1 28 5.3 

8/22/95 8 4.2 20 1.1 28 5.3 

8/23/95 8 4.2 20 1.2 28 5.4 

8/24/95 8 4.2 20 1.1 28 5.3 

8/25/95 8 4.2 20 1.2 28 5.4 

8/26/95 8 4.2 20 1.1 28 5.3 

8/27/95 8 4.2 20 1.1 28 5.3 

8/28/95 8 4.2 20 1.1 28 5.3 

8/29/95 8 4.2 20 1.1 28 5.3 

8/30/95 8 4.2 20 1.2 28 5.4 
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8/31/95 8 4.2 

9/1/95 8 4.2 

9/2/95 8 4.2 

9/3/95 8 4.2 

9/4/95 8 4.2 

9/5/95 8 4.2 

9/6/95 8 4.2 

9/7/95 8 4.2 

9/8/95 8 4.2 

9/9/95 8 4.2 

9/10/95 8 4.2 

9/11/95 8 4.2 

9/12/95 8 4.2 

9/13/95 8 4.2 

9/14/95 8 4.2 

9/15/95 8 4.2 

9/16/95 8 4.2 

9/17/95 8 4.2 

9/18/95 8 4.2 

9/19/95 8 4.2 

9/20/95 8 4.2 

9/21/95 8 4.2 
9/22/95 8 4.2 

9/23/95 8 4.2 

9/24/95 8 4.2 

9/25/95 8 4.2 
9/26/95 8 4.2 

9/27/95 8 4.2 
9/28/95 8 4.2 
9/29/95 8 4.2 
9/30/95 8 4.2 
10/1/95 8 4.2 
10/2/95 8 4.2 
10/3/95 8 4.2 
10/4/95 8 4.2 
10/5/95 8 4.2 
10/6/95 8 4.2 
10/7/95 8 4.2 
10/8/95 8 4.2 
10/9/95 8 4.2 

1.1 28 5.3 

1.2 28 5.4 

1.1 28 5.3 

1.1 28 5.3 

28 5.5 

1.1 28 5.3 

1.1 28 5.3 

1.1 28 5.3 

28 5.4 

1.1 28 5.3 

1.1 28 5.3 

1.1 28 5.3 

1.1 28 5.3 

1.1 28 5.3 

28 5.4 

1.1 28 5.3 

1.1 28 5.3 

1.1 28 5.3 

28 5.5 

1.1 28 5.3 

1.1 28 5.3 

1.1 28 5.3 

1.1 28 5.3 

28 5.4 

1.1 28 5.3 
28 5.4 

1.1 28 5.3 

1.1 28 5.3 

1.2 28 5.4 

1.2 28 5.4 

1.2 28 5.4 
1.2 28 5.4 
1.2 28 5.4 
1.1 28 5.3 
1.1 28 5.3 
1.3 28 5.5 
1.1 28 5.3 

1.1 28 5.3 

1.1 28 5.3 
1.1 28 5.3 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
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10/10/95 8 4.2 20 1.3 28 5.5 

10/11/95 8 4.2 20 1.1 28 5.3 

10/12/95 8 4.2 20 1.1 28 5.3 

10/13/95 8 4.2 20 1.2 28 5.4 

10/14/95 8 4.2 20 1.1 28 5.3 

10/15/95 8 4.2 20 1.1 28 5.3 

10/16/95 8 4.2 20 1.1 28 5.3 

10/17/95 8 4.2 20 1.0 28 5.2 

10/18/95 8 4.2 20 i . l  28 5.3 

10/19/95 8 4.2 20 l . l  28 5.3 

10/20/95 8 4.2 20 1.1 28 5.3 

10/21/95 8 4.2 20 1.1 28 5.3 

10/22/95 8 4.2 20 1.2 28 5.4 

10/23/95 8 4.2 20 1.1 28 5.3 

10/24/95 8 4.2 20 1.1 28 5.3 

10/25/95 8 4.2 20 1.1 28 5.3 
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Table 27. Daily biogas production of two-stage system B at diflferent SRTs for mixture 1 

Date First-stage Second-stage Systi sm 

SRT Biogas SRT Biogas SRT Biogas 

(days) (STP L/d) (days) (STP L/d) (days) (STP L/d) 

2/16/95 1 2.3 10 4.3 11 6.6 

2/17/95 1 2.3 10 4.3 11 6.6 

2/18/95 1 2.3 10 4.3 11 6.6 

2/19/95 1 2.3 10 4.3 11 6.6 

2/20/95 1 2.3 10 4.3 11 6.6 

2/21/95 1 2.4 10 4.3 11 6.7 

2/22/95 1 2.4 10 4.4 11 6.8 

2/23/95 1 2.4 10 4.4 11 6.8 

2/24/95 1 2.4 10 4.4 11 6.8 

2/25/95 I 2.4 10 4.4 11 6.8 

2/26/95 1 2.4 10 4.5 11 6.9 

2/27/95 1 2.4 10 4.4 11 6.8 

2/28/95 1 2.4 10 4.4 11 6.8 

3/1/95 1 2.4 10 4.5 11 6.9 

3/2/95 1 2.4 10 4.4 11 6.8 

3/3/95 1 2.5 10 4.4 11 6.9 

3/4/95 1 2.5 10 4.4 11 6.9 

3/5/95 1 2.5 10 4.4 11 6.9 

3/6/95 I 2.5 10 4.4 11 6.9 

3/7/95 1 2.5 10 4.4 11 6.9 

3/8/95 1 2.5 10 4.5 11 7.0 

3/9/95 1 2.5 10 4.5 11 7.0 

3/10/95 1 2.5 10 4.5 11 7.0 

3/11/95 1 2.5 10 4.6 11 7.1 

3/12/95 1 2.5 10 4.5 11 7.0 

3/13/95 I 2.5 10 4.5 11 7.0 

3/14/95 1 2.5 10 4.5 11 7.0 

3/15/95 1 2.5 10 4.6 11 7.1 

3/16/95 1 2.5 10 4.5 11 7.0 

3/17/95 1 2.5 10 4.5 11 7.0 

3/18/95 1 2.5 10 4.5 11 7.0 

3/19/95 1 2.5 10 4.6 11 7.1 
3/20/95 1 2.5 10 4.5 11 7.0 

3/21/95 1 2.5 10 4.5 11 7.0 
3/22/95 1 2.5 10 4.5 11 7.0 
3/23/95 I 2.5 10 4.5 11 7.0 
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3/24/95 1 2.5 

3/25/95 1 2.5 

3/26/95 1 2.5 

3/27/95 1 2.5 

3/28/95 I 2.5 
3/29/95 I 2.5 
3/30/95 1 2.5 
3/31/95 1 2.5 
4/1/95 2 2.9 
4/2/95 2 2.9 
4/3/95 2 2.9 

4/4/95 2 3.0 

4/5/95 i. 3.0 
4/6/95 2 3.0 
4/7/95 2 3.0 
4/8/95 2 3.1 
4/9/95 2 3.1 
4/10/95 2 3.1 
4/11/95 2 3.1 
4/12/95 2 3.3 
4/13/95 2 3.3 
4/14/95 2 3.3 

4/15/95 2 3.3 
4/16/95 2 3.4 
4/17/95 2 3.4 
4/18/95 2 3.4 
4/19/95 2 3.4 
4/20/95 2 3.5 
4/21/95 2 3.6 
4/22/95 2 3.5 
4/23/95 2 3.5 
4/24/95 2 3.5 
4/25/95 2 3.6 
4/26/95 2 3.6 
4/27/95 2 3.6 
4/28/95 2 3.6 
4/29/95 2 3.6 
4/30/95 2 3.6 
5/1/95 2 3.6 
5/2/95 2 3.6 

4.4 11 6.9 

4.5 11 7.0 

4.5 11 7.0 

4.3 11 6.8 
4.5 11 7.0 
4.5 11 7.0 
4.6 11 7.1 
4.5 11 7.0 

4.4 12 7.3 

4.4 12 7.3 

4.4 12 7.3 

4.4 12 7.4 
4.4 12 7.4 
4.4 12 7.4 
4.4 12 7.4 
4.4 12 7.5 
4.4 12 7.5 
4.4 12 7.5 
4.4 12 7.5 
4.3 12 7.6 
4.3 12 7.6 
4.3 12 7.6 
4.3 12 7.6 
4.3 12 7.7 
4.5 12 7.9 
4.5 12 7.9 
4.5 12 7.9 
4.5 12 8.0 
4.5 12 8.1 
4.5 12 8.0 
4.4 12 7.9 
4.4 12 7.9 
4.4 12 8.0 
4.2 12 7.8 
4.4 12 8.0 
4.4 12 8.0 
4.4 12 8.0 
4.4 12 8.0 
4.4 12 8.0 
4.4 12 8.0 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

10 

10 
10 
10 
10 
10 
10 
10 
10 
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5/3/95 
5/4/95 
5/5/95 
5/6/95 
5/7/95 
5/8/95 
5/9/95 
5/10/95 
5/11/95 
5/12/95 
5/13/95 
5/14/95 
5/15/95 
5/16/95 
5/17/95 
5/18/95 
5/19/95 
5/20/95 
5/21/95 
5/22/95 
5/23/95 
5/24/95 
5/25/95 
5/26/95 
5/27/95 
5/28/95 
5/29/95 
5/30/95 
5/31/95 
6/1/95 
6/2/95 
6/3/95 
6/4/95 
6/5/95 
6/6/95 
6/7/95 
6/8/95 
6/9/95 
6/10/95 
6/11/95 

2 3.6 

2 3.6 

2 3.6 

2 3.6 

2 3.6 
2 3.6 
2 3.5 
2 3.6 
2 3.6 
2 3.6 
2 3.4 
2 3.6 

2 3.5 
2 3.6 
2 3.7 
2 3.6 

2.8 3.9 
2.8 3.9 
2.8 3.9 
2.8 3.9 
2.8 4.1 
2.8 4.1 
2.8 4.2 
2.8 4.1 
2.8 4.1 
2.8 4.2 
2.8 4.2 
2.8 4.2 
2.8 4.2 
2.8 4.3 
2.8 4.3 
2.8 4.3 
2.8 4.3 
2.8 4.2 
2.8 4.3 
2.8 4.3 
2.8 4.2 
2.8 4.3 
2.8 4.4 
2.8 4.3 

115 

10 4.3 
10 4.4 
10 4.4 
10 4.4 
10 4.3 
10 4.4 
10 4.4 
10 4.4 
10 4.4 
10 4.4 
10 4.4 
10 4.4 
10 4.4 
10 4.4 
10 4.4 
10 4.4 

14.2 4.0 
14.2 3.8 
14.2 3.7 
14.2 3.4 
14.2 3.2 
14.2 3.1 
14.2 2.7 
14.2 2.5 
14.2 2.3 
14.2 2.0 
14.2 1.9 
14.2 1.8 
14.2 1.8 
14.2 1.8 
14.2 1.8 
14.2 1.8 
14.2 1.8 
14.2 1.8 
14.2 1.8 
14.2 1.7 
14.2 1.7 
14.2 1.7 
14.2 1.7 
14.2 1.6 

12 7.9 
12 8.0 
12 8.0 
12 8.0 
12 7.9 
12 8.0 
12 7.9 
12 8.0 
12 8.0 
12 8.0 
12 7.8 
12 8.0 
12 7.9 
12 8.0 
12 8.1 
12 8.0 
17 7.9 
17 7.7 
17 7.6 
17 7.3 
17 7.3 
17 7.2 
17 6.9 
17 6.6 
17 6.4 
17 6.2 
17 6.1 
17 6.0 
17 6.0 
17 6.1 
17 6.1 
17 6.1 
17 6.1 
17 6.0 
17 6.1 
17 6.0 
17 5.9 
17 6.0 
17 6.1 
17 5.9 



www.manaraa.com

116 

6/12/95 2.8 4.4 14.2 1.7 17 6.1 

6/13/95 2.8 4.3 14.2 1.8 17 6.1 

6/14/95 2.8 4.2 14.2 1.4 17 5.6 

6/15/95 2.8 4.3 14.2 1.9 17 6.2 

6/16/95 2.8 4.4 14.2 1.7 17 6.1 

6/17/95 2.8 4.3 14.2 1.7 17 6.0 

6/18/95 2.8 4.3 14.2 1.6 17 5.9 

6/19/95 2.8 4.5 14.2 1.7 17 6.2 

6/20/95 2.8 4.3 14.2 1.7 17 6.0 

6/21/95 2.8 4.1 14.2 1.8 17 5.9 

6/22/95 2.8 4.3 14.2 1.7 17 6.0 

6/23/95 2.8 4.3 14.2 1.7 17 6.0 

6/24/95 2.8 4.3 14.2 1.7 17 6.0 

6/25/95 2.8 4.2 14.2 1.7 17 5.9 

6/26/95 2.8 4.3 14.2 1.6 17 5.9 

6/27/95 2.8 4.3 14.2 1.7 17 6.0 

6/28/95 2.8 4.5 14.2 1.7 17 6.2 

6/29/95 2.8 4.3 14.2 1.5 17 5.8 

6/30/95 2.8 4.3 14.2 1.7 17 6.0 

7/1/95 2.8 4.2 14.2 1.7 17 5.9 

7/2/95 2.8 4.3 14.2 1.7 17 6.0 

7/3/95 2.8 4.2 14.2 1.7 17 5.9 

7/4/95 2.8 4.2 14.2 1.7 17 5.9 

7/5/95 2.8 4.3 14.2 1.8 17 6.1 

7/6/95 2.8 4.3 14.2 1.7 17 6.0 

7/7/95 2.8 4.4 14.2 1.7 17 6.1 

7/8/95 2.8 4.3 14.2 1.7 17 6.0 

7/9/95 2.8 4.5 14.2 1.7 17 6.2 

7/10/95 2.8 4.3 14.2 1.7 17 6.0 

7/11/95 2.8 4.3 14.2 1.9 17 6.2 

7/12/95 2.8 4.3 14.2 1.5 17 5.8 

7/13/95 2.8 4.3 14.2 1.7 17 6.0 

7/14/95 2.8 4.3 14.2 1.7 17 6.0 

7/15/95 2.8 4.3 14.2 1.7 17 6.0 

7/16/95 2.8 4.2 14.2 1.8 17 6.0 
7/17/95 2.8 4.3 14.2 1.7 17 6.0 
7/18/95 2.8 4.3 14.2 1.7 17 6.0 
7/19/95 2.8 4.1 14.2 1.8 17 5.9 

7/20/95 2.8 4.3 14.2 1.7 17 6.0 

7/21/95 2.8 4.3 14.2 1.7 17 6.0 
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7/22/95 2.8 4.3 

7/23/95 2.8 4.3 

7/24/95 2.8 4.2 

7/25/95 2.8 4.3 

7/26/95 4 3.9 

7/27/95 4 3.9 

7/28/95 4 3.9 

7/29/95 4 3.9 

7/30/95 4 3.9 
7/31/95 4 3.9 
8/1/95 4 3.8 
8/2/95 4 3.9 

8/3/95 4 3.7 
8/4/95 4 3.9 
8/5/95 4 3.9 
8/6/95 4 3.9 
8/7/95 4 3.9 
8/8/95 4 3.9 
8/9/95 4 3.9 
8/10/95 4 3.7 
8/11/95 4 3.9 
8/12/95 4 3.9 
8/13/95 4 3.7 
8/14/95 4 3.7 
8/15/95 4 3.9 
8/16/95 4 3.8 
8/17/95 4 3.9 
8/18/95 4 3.9 
8/19/95 4 3.9 
8/20/95 4 3.8 
8/21/95 4 3.9 
8/22/95 4 3.8 
8/23/95 4 3.9 
8/24/95 4 3.9 
8/25/95 4 3.9 
8/26/95 4 4.0 
8/27/95 4 3.6 
8/28/95 4 3.9 
8/29/95 4 3.9 
8/30/95 4 3.9 

1.9 17 6.2 
1.7 17 6.0 
1.7 17 5.9 
1.7 17 6.0 

1.0 24 4.9 

1.0 24 4.9 
1.0 24 4.9 

1.0 24 4.9 

1.0 24 4.9 
1.0 24 4.9 
1.0 24 4.8 
1.0 24 4.9 

1.0 24 4.7 
1.0 24 4.9 
1.0 24 4.9 
1.0 24 4.9 
0.9 24 4.8 
0.9 24 4.8 
0.9 24 4.8 
0.9 24 4.6 
0.9 24 4.8 
1.0 24 4.9 
1.0 24 4.7 
1.0 24 4.7 
1.1 24 5.0 
1.0 24 4.8 
1.0 24 4.9 
1.0 24 4.9 
1.0 24 4.9 
1.0 24 4.8 
1.0 24 4.9 
0.9 24 4.7 
1.0 24 4.9 
1.0 24 4.9 
1.0 24 4.9 
0.9 24 4.9 
1.0 24 4.6 
1.0 24 4.9 
1.0 24 4.9 
0.9 24 4.8 

14.2 
14.2 
14.2 
14.2 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
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8/31/95 4 3.9 

9/1/95 4 3.9 

9/2/95 4 3.9 

9/3/95 4 3.9 

9/4/95 4 3.9 

9/5/95 4 3.9 

9/6/95 4 3.9 
9/7/95 4 3.9 

9/8/95 4 3.9 

9/9/95 4 3.9 

9/10/95 4 3.8 

9/11/95 4 3.7 

9/12/95 4 3.9 
9/13/95 4 3.9 
9/14/95 4 3.9 
9/15/95 4 3.9 
9/16/95 4 3.8 
9/17/95 4 3.9 
9/18/95 4 3.7 
9/19/95 4 3.9 
9/20/95 4 3.9 
9/21/95 4 3.9 
9/22/95 4 3.9 
9/23/95 4 3.9 
9/24/95 4 3.9 
9/25/95 4 3.8 
9/26/95 4 3.9 
9/27/95 4 3.9 
9/28/95 4 3.8 
9/29/95 4 3.9 
9/30/95 4 3.9 
10/1/95 4 3.8 
10/2/95 4 3.8 
10/3/95 4 3.9 
10/4/95 4 3.9 
10/5/95 4 3.9 
10/6/95 4 3.9 
10/7/95 4 3.9 
10/8/95 4 3.9 
10/9/95 4 3.9 

0.9 24 4.8 

0.9 24 4.8 

1.0 24 4.9 

1.0 24 4.9 
0.9 24 4.8 
1.0 24 4.9 
1.0 24 4.9 
1.1 24 5.0 
1.0 24 4.9 
1.0 24 4.9 
1.1 24 4.9 

1.0 24 4.7 
1.0 24 4.9 

1.1 24 5.0 
1.0 24 4.9 
1.0 24 4.9 
l.l 24 4.9 
1.1 24 5.0 
0.9 24 4.6 
0.9 24 4.8 
l.O 24 4.9 
1.0 24 4.9 
1.0 24 4.9 
1.0 24 4.9 
1.1 24 5.0 
1.0 24 4.8 
1.0 24 4.9 
0.9 24 4.8 
1.0 24 4.8 
1.0 24 4.9 
1.1 24 5.0 
1.0 24 4.8 
0.9 24 4.7 
1.0 24 4.9 
1.0 24 4.9 
1.0 24 4.9 
1.0 24 4.9 
1.1 24 5.0 
1.0 24 4.9 
1.0 24 4.9 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
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10/10/95 4 3.9 20 l.l 24 5.0 

10/11/95 4 3.9 20 1.0 24 4.9 

10/12/95 4 3.9 20 1.1 24 5.0 

10/13/95 4 3.9 20 1.0 24 4.9 

10/14/95 4 3.9 20 1.0 24 4.9 

10/15/95 4 3.9 20 1.0 24 4.9 

10/16/95 4 3.8 20 0.9 24 4.7 

10/17/95 4 3.9 20 1.0 24 4.9 

10/18/95 4 3.9 20 1.0 24 4.9 

10/19/95 4 3.9 20 1.0 24 4.9 

10/20/95 4 3.7 20 1.0 24 4.7 

10/21/95 4 3.9 20 l.O 24 4.9 

10/22/95 4 3.9 20 1.0 24 4.9 

10/23/95 4 3.9 20 1.0 24 4.9 

10/24/95 4 3.9 20 1.1 24 5.0 

10/25/95 4 3.8 20 1.0 24 4.8 
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APPENDIX B. 

TIME PERIOD AND DAILY BIOGAS PRODUCTION FOR 25:75 PS AND WAS 
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Table 28. Time period of the second run test for mixture 2 

System Q(L/d) SRT (days) Time period 

0.580 24 11/1/95 to 12/18/95 
Single-stage 0.500 28 12/19/95 to 2/12/96 

system 0.412 34 2/13/96 to 4/20/96 
0.350 40 4/21/96 to 7/9/96 

Two-stage 1.000 14 11/1/95 to 12/26/95 
system A 0.700 20 12/27/95 to 3/15/96 

0.500 28 3/16/96 to 7/9/96 
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Table 29. Daily biogas production of single-stage system at different SRTs for mixture 2 

Date SRT Biogas 
(days) (STP L/d) 

11/1/95 24 3.4 
11/2/95 24 3.4 
11/3/95 24 3.4 
11/4/95 24 3.5 
11/5/95 24 3.4 
11/6/95 24 3.5 
11/7/95 24 3.4 
11/8/95 24 3.4 
11/9/95 24 3.5 

11/10/95 24 3.4 
11/11/95 24 3.4 
11/12/95 24 3.4 
11/13/95 24 3.5 
11/14/95 24 3.4 
11/15/95 24 3.6 
11/16/95 24 3.4 
11/17/95 24 3.4 
11/18/95 24 3.5 
11/19/95 24 3.4 
11/20/95 24 3.4 
11/21/95 24 3.5 
11/22/95 24 3.4 
11/23/95 24 3.6 
11/24/95 24 3.6 
11/25/95 24 3.5 
11/26/95 24 3.6 
11/27/95 24 3.5 
11/28/95 24 3.6 
11/29/95 24 3.4 
11/30/95 24 3.6 
12/1/95 ?4 3.6 
12/2/95 24 3.5 
12/3/95 24 3.6 
12/4/95 24 3.5 
12/5/95 24 3.6 
12/6/95 24 3.6 
12/7/95 24 3.6 
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12/8/95 24 3.6 

12/9/95 24 3.6 

12/10/95 24 3.5 

12/11/95 24 3.6 

12/12/95 24 3.6 

12/13/95 24 3.5 

12/14/95 24 3.6 

12/15/95 24 3.5 

12/16/95 24 3.6 

12/17/95 24 3.4 

12/18/95 24 3.6 

12/19/95 28 3.7 

12/20/95 28 3.7 

12/21/95 28 3.7 

12/22/95 28 3.8 

12/23/95 28 3.8 

12/24/95 28 3.7 
12/25/95 28 3.9 

12/26/95 28 3.7 

12/27/95 28 3.8 
12/28/95 28 3.7 
12/29/95 28 3.8 

12/30/95 28 3.9 
12/31/95 28 3.9 
1/1/96 28 3.9 
1/2/96 28 4.0 
1/3/96 28 3.9 
1/4/96 28 3.9 
1/5/96 28 3.9 
1/6/96 28 3.9 
1/7/96 28 3.9 
1/8/96 28 3.9 
1/9/96 28 4.0 
1/10/96 28 4.0 
1/11/96 28 3.8 
1/12/96 28 4.0 
1/13/96 28 4.1 
1/14/96 28 4.0 
1/15/96 28 4.2 
1/16/96 28 4.0 
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1/17/96 28 3.8 

1/18/96 28 4.0 

1/19/96 28 4.0 

1/20/96 28 4.1 

1/21/96 28 3.9 

1/22/96 28 3.9 

1/23/96 28 4.2 

1/24/96 28 4.0 

1/25/96 28 4.0 

1/26/96 28 4.1 

1/27/96 28 4.1 

1/28/96 28 4.1 

1/29/96 28 3.9 

1/30/96 28 4.2 

1/31/96 28 3.9 

2/1/96 28 4.1 

2/2/96 28 4.1 

2/3/96 28 4.0 

2/4/96 28 4.0 

2/5/96 28 3.9 

2/6/96 28 4.2 

2/7/96 28 4.0 

2/8/96 28 4.1 
2/9/96 28 4.1 

2/10/96 28 3.9 

2/11/96 28 4.1 

2/12/96 28 4.0 

2/13/96 34 3.8 
2/14/96 34 3.8 

2/15/96 34 3.6 
2/16/96 34 3.6 
2/17/96 34 3.6 
2/18/96 34 3.5 
2/19/96 34 3.5 
2/20/96 34 3.4 
2/21/96 34 3.4 
2/22/96 34 3.4 
2/23/96 34 3.5 
2/24/96 34 3.4 
2/25/96 34 3.5 
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2/26/96 34 3.5 

2/27/96 34 3.5 

2/28/96 34 3.5 

2/29/96 34 3.3 

3/1/96 34 3.5 

3/2/96 34 3.4 

3/3/96 34 3.5 

3/4/96 34 3.4 

3/5/96 34 3.4 

3/6/96 34 3.5 

3/7/96 34 3.6 

3/8/96 34 3.5 

3/9/96 34 3.3 

3/10/96 34 3.4 

3/11/96 34 3.4 

3/12/96 34 3.2 

3/13/96 34 3.5 

3/14/96 34 3.5 

3/15/96 34 3.4 

3/16/96 34 3.3 

3/17/96 34 3.4 

3/18/96 34 3.4 

3/19/96 34 3.5 

3/20/96 34 3.4 
3/21/96 34 3.6 
3/22/96 34 3.2 
3/23/96 34 3.5 
3/24/96 34 3.5 
3/25/96 34 3.4 
3/26/96 34 3.4 
3/27/96 34 3.3 
3/28/96 34 3.4 
3/29/96 34 3.5 
3/30/96 34 3.4 
3/31/96 34 3.4 
4/1/96 34 3.4 
4/2/96 34 3.4 
4/3/96 34 3.3 
4/4/96 34 3.5 
4/5/96 34 3.4 
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4/6/96 34 3.4 

4/7/96 34 3.4 

mm 34 3.3 

4/9/96 34 3.4 

4/10/96 34 3.4 

4/11/96 34 3.2 

4/12/96 34 3.4 

4/13/96 34 3.4 

4/14/96 34 3.3 

4/15/96 34 3.4 

4/16/96 34 3.4 

4/17/96 34 3.5 

4/18/96 34 3.4 

4/19/96 34 3.3 

4/20/96 34 3.4 

4/21/96 40 3.3 

4/22/96 40 3.3 

4/23/96 40 3.2 

4/24/96 40 3.3 

4/25/96 40 3.3 

4/26/96 40 3.4 
4/27/96 40 3.2 
4/28/96 40 3.1 
4/29/96 40 3.2 
4/30/96 40 3.2 

5/1/96 40 3.3 
5/2/96 40 3.2 
5/3/96 40 3.2 
5/4/96 40 3.4 
5/5/96 40 3.2 
5/6/96 40 3.1 
5/7/96 40 3.2 
5/8/96 40 3.3 
5/9/96 40 3.0 
5/10/96 40 3.3 
5/11/96 40 3.2 
5/12/96 40 3.3 
5/13/96 40 3.5 
5/14/96 40 3.3 
5/15/96 40 3.0 
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5/16/96 40 3.3 

5/17/96 40 3.3 

5/18/96 40 3.3 

5/19/96 40 3.2 

5/20/96 40 3.2 

5/21/96 40 3.4 

5/22/96 40 3.2 

5/23/96 40 3.3 

5/24/96 40 3.1 

5/25/96 40 3.3 

5/26/96 40 3.3 

5/27/96 40 3.2 

5/28/96 40 3.3 

5/29/96 40 3.4 

5/30/96 40 3.3 

5/31/96 40 3.5 

6/1/96 40 3.2 

6/2/96 40 3.1 

6/3/96 40 3.2 

6/4/96 40 3.3 

6/5/96 40 3.3 

6/6/96 40 3.4 

6/7/96 40 3.3 

6/8/96 40 3.5 
6/9/96 40 3.3 

6/10/96 40 3.1 
6/11/96 40 3.3 

6/12/96 40 3.2 
6/13/96 40 3.2 
6/14/96 40 3.4 
6/15/96 40 3.1 
6/16/96 40 3.3 
6/17/96 40 3.4 
6/18/96 4a 3.3 
6/19/96 40 3.2 
6/20/96 40 3.3 
6/21/96 40 3.1 
6/22/96 40 3.3 
6/23/96 40 3.2 
6/24/96 40 3.2 
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6/25/96 40 3.3 
6/26/96 40 3.3 
6111196 40 3.1 
6/28/96 40 3.3 
6/29/96 40 3.2 
6/30/96 40 3.2 
7/1/96 40 3.3 
7/2/96 40 3.3 
7/3/96 40 3.1 
7/4/96 40 3.3 
7/5/96 40 3.2 
7/6/96 40 3.3 
7/7/96 40 3.4 
7/8/96 40 3.3 
7/9/96 40 3.3 
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Table 30. Daily biogas production of two-stage system A at different SRTs for mixture 2 

Date First-stage Second-stage Syst em 

SRT Biogas SRT Biogas SRT Biogas 

(days) (STP L/d) (days) (STP L/d) (days) (STP L/d) 

11/1/95 4 5.4 10 2.8 14 8.2 

11/2/95 4 5.4 10 3.0 14 8.4 

11/3/95 4 5.3 10 3.0 14 8.3 

11/4/95 4 5.4 10 3.0 14 8.4 

11/5/95 4 5.4 10 2.9 14 8.3 

11/6/95 4 5.4 10 2.9 14 8.3 

11/7/95 4 5.5 10 2.9 14 8.4 

11/8/95 4 5.6 10 3.1 14 8.7 

11/9/95 4 5.5 10 3.1 14 8.6 

11/10/95 4 5.4 10 3.0 14 8.4 

11/11/95 4 5.5 10 3.1 14 8.6 

11/12/95 4 5.3 10 3.1 14 8.4 

11/13/95 4 5.5 10 3.0 14 8.5 

11/14/95 4 5.6 10 3.0 14 8.6 

11/15/95 4 5.5 10 3.2 14 8.7 

11/16/95 4 5.3 10 3.0 14 8.3 

11/17/95 4 5.5 10 2.9 14 8.4 

11/18/95 4 5.6 10 3.0 14 8.6 

11/19/95 4 5.6 10 3.1 14 8.7 

11/20/95 4 5.4 10 3.1 14 8.5 

11/21/95 4 5.6 10 3.2 14 8.8 

11/22/95 4 5.3 10 3.1 14 8.4 

11/23/95 4 5.6 10 3.1 14 8.7 

11/24/95 4 5.4 10 3.0 14 8.4 

11/25/95 4 5.6 10 3.1 14 8.7 

11/26/95 4 5.5 10 3.2 14 8.7 

11/27/95 4 5.6 10 3.2 14 8.8 

11/28/95 4 5.3 10 3.1 14 8.4 
11/29/95 4 5.6 10 3.2 14 8.8 
11/30/95 4 5.5 10 3.2 14 8.7 
12/1/95 4 5.6 10 3.0 14 8.6 
12/2/95 4 5.4 10 3.1 14 8.5 
12/3/95 4 5.4 10 3.1 14 8.5 
12/4/95 4 5.6 10 2.9 14 8.5 
12/5/95 4 5.5 10 3.1 14 8.6 
12/6/95 4 5.5 10 3.2 14 8.7 
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12/7/95 
12/8/95 
12/9/95 
12/10/95 
12/11/95 
12/12/95 
12/13/95 
12/14/95 
12/15/95 
12/16/95 
12/17/95 
12/18/95 
12/19/95 
12/20/95 
12/21/95 
12/22/95 
12/23/95 
12/24/95 
12/25/95 
12/26/95 
12/27/95 
12/28/95 
12/29/95 
12/30/95 
12/31/95 
1/1/96 
1/2/96 
1/3/96 
1/4/96 
1/5/96 
1/6/96 
1/7/96 
1/8/96 
1/9/96 
1/10/96 
1/11/96 
1/12/96 
1/13/96 
1/14/96 
1/15/96 

4 5.4 
4 5.5 
4 5.5 
4 5.6 
4 5.6 
4 5.5 
4 5.4 
4 5.6 
4 5.3 
4 5.6 
4 5.4 
4 5.6 
4 5.3 
4 5.6 
4 5.5 
4 5.6 
4 5.3 
4 5.7 
4 5.6 
4 5.6 

5.7 5.3 
5.7 5.1 
5.7 4.8 
5.7 4.8 
5.7 4.8 
5.7 4.8 
5.7 4.7 
5.7 4.7 
5.7 4.6 
5.7 4.8 
5.7 4.7 
5.7 4.7 
5.7 4.9 
5.7 4.7 
5.7 4.6 
5.7 4.7 
5.7 4.8 
5.7 4.6 
5.7 4.7 
5.7 4.6 
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10 3.1 
10 3.3 
10 2.9 
10 3.1 
10 3.1 
10 3.0 
10 3.1 
10 3.1 
10 3.2 
10 3.1 
10 3.1 
10 3.1 
10 3.1 
10 3.1 
10 3.1 
10 3.1 
10 3.1 
10 3.1 
10 3.1 
10 3.1 

14.3 2.8 
14.3 2.6 
14.3 2.5 
14.3 2.2 
14.3 2.1 
14.3 2.0 
14.3 1.9 
14.3 1.8 
14.3 1.8 
14.3 1.8 
14.3 1.8 
14.3 1.9 
14.3 1.9 
14.3 1.9 
14.3 1.9 
14.3 1.7 
14.3 1.8 
14.3 1.9 
14.3 1.8 
14.3 1.8 

14 8.5 
14 8.8 
14 8.4 
14 8.7 

14 8.7 
14 8.5 
14 8.5 
14 8.7 
14 8.5 
14 8.7 
14 8.5 
14 8.7 
14 8.4 
14 8.7 
14 8.6 
14 8.7 
14 8.4 
14 8.8 
14 8.7 
14 8.7 
20 8.1 
20 7.7 
20 7.3 
20 7.0 
20 6.9 
20 6.8 
20 6.6 
20 6.5 
20 6.4 
20 6.6 
20 6.5 
20 6.6 
20 6.8 
20 6.6 
20 6.5 
20 6.4 
20 6.6 
20 6.5 
20 6.5 
20 6.4 
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1/16/96 
1/17/96 
1/18/96 
1/19/96 
1/20/96 
1/21/96 
1/22/96 
1/23/96 
1/24/96 
1/25/96 
1/26/96 
1/27/96 
1/28/96 
1/29/96 
1/30/96 
1/31/96 
2/1/96 
2/2/96 
2/3/96 
2/4/96 
2/5/96 
2/6/96 
2/7/96 
2/8/96 
2/9/96 
2/10/96 
2/11/96 
2/12/96 
2/13/96 
2/14/96 
2/15/96 
2/16/96 
2/17/96 
2/18/96 
2/19/96 
2/20/96 
2/21/96 
2/22/96 
2/23/96 
2/24/96 

5.7 4.8 
5.7 4.6 
5.7 4.5 
5.7 4.8 
5.7 4.8 
5.7 4.7 
5.7 4.8 
5.7 4.6 
5.7 4.8 
5.7 4.8 
5.7 4.5 
5.7 4.8 
5.7 4.7 
5.7 4.6 
5.7 4.7 
5.7 4.7 
5.7 4.8 
5.7 4.7 
5.7 4.6 
5.7 4.7 
5.7 4.7 
5.7 4.8 
5.7 4.7 
5.7 4.7 
5.7 4.6 
5.7 4.7 
5.7 4.7 
5.7 4.8 
5.7 4.7 
5.7 4.6 
5.7 4.7 
5.7 4.6 
5.7 4.7 
5.7 4.7 
5.7 4.5 
5.7 4.9 
5.7 4.7 
5.7 4.7 
5.7 4.8 
5.7 4.5 
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14.3 1.8 
14.3 1.9 
14.3 1.9 
14.3 1.8 
14.3 1.9 
14.3 1.9 
14.3 1.7 
14.3 1.9 
14.3 1.9 
14.3 1.7 
14.3 1.9 
14.3 1.8 
14.3 1.9 
14.3 1.9 
14.3 1.7 
14.3 1.8 
14.3 1.8 
14.3 1.9 
14.3 1.8 
14.3 1.9 
14.3 1.8 
14.3 1.9 
14.3 1.9 
14.3 1.9 
14.3 1.9 
14.3 1.7 
14.3 1.9 
14.3 1.8 
14.3 1.8 
14.3 1.7 
14.3 1.8 
14.3 1.9 
14.3 1.9 
14.3 1.7 
14.3 1.9 
14.3 1.9 
14.3 1.8 
14.3 1.9 
14.3 1.9 
14.3 1.8 

20 6.6 
20 6.5 
20 6.4 
20 6.6 
20 6.7 
20 6.6 
20 6.5 
20 6.5 
20 6.7 
20 6.5 
20 6.4 
20 6.6 
20 6.6 
20 6.5 
20 6.4 
20 6.5 
20 6.6 
20 6.6 
20 6.4 
20 6.6 
20 6.5 
20 6.7 
20 6.6 
20 6.6 
20 6.5 
20 6.4 
20 6.6 
20 6.6 
20 6.5 
20 6.3 
20 6.5 
20 6.5 
20 6.6 
20 6.4 
20 6.4 
20 6.8 
20 6.5 
20 6.6 
20 6.7 
20 6.3 
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2/25/96 
2/26/96 
2/27/96 
2/28/96 
2/29/96 
3/1/96 
3/2/96 
3/3/96 
3/4/96 
3/5/96 
3/6/96 
3/7/96 
3/8/96 
3/9/96 
3/10/96 
3/11/96 
3/12/96 
3/13/96 
3/14/96 
3/15/96 
3/16/96 
3/17/96 
3/18/96 
3/19/96 
3/20/96 
3/21/96 
3/22/96 
3/23/96 
3/24/96 
3/25/96 
3/26/96 
3/27/96 
3/28/96 
3/29/96 
3/30/96 
3/31/96 
4/1/96 
4/2/96 
4/3/96 
4/4/96 

5.7 4.7 
5.7 4.6 
5.7 4.7 
5.7 4.5 
5.7 4.9 
5.7 4.7 
5.7 4.7 
5.7 4.8 
5.7 4.7 
5.7 4.9 
5.7 4.7 
5.7 4.7 
5.7 4.8 
5.7 4.7 
5.7 4.6 
5.7 4.8 
5.7 4.7 
5.7 4.8 
5.7 4.7 
5.7 4.7 
8 4.3 
8 4.1 
8 3.9 
8 3.9 
8 3.9 
8 3.9 
8 3.8 
8 3.7 
8 3.8 
8 3.8 
8 3.9 
8 3.8 
8 4.0 
8 3.8 
8 3.8 
8 3.7 
8 3.9 
8 3.9 
8 3.8 
8 3.9 
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14.3 1.9 
14.3 1.9 
14.3 1.7 
14.3 1.9 
14.3 1.8 
14.3 1.9 
14.3 1.7 
14.3 1.9 
14.3 1.8 
14.3 1-9 
14.3 1.7 
14.3 1.9 
14.3 1.9 
14.3 1.8 
14.3 1.9 
14.3 1.8 
14.3 1.9 
14.3 1.9 
14.3 1.8 
14.3 1.9 
20 1.6 
20 1.5 
20 1.4 
20 1.3 
20 1.2 
20 1.2 
20 1.1 
20 1.2 
20 1.1 
20 1.1 
20 1.2 
20 1.1 
20 1.1 
20 3.0 
20 1.0 
20 l.O 
20 1.1 
20 1.0 
20 1.0 
20 1.2 

20 6.6 
20 6.5 
20 6.4 
20 6.4 
20 6.7 
20 6.6 
20 6.4 
20 6.7 
20 6.5 
20 6.8 
20 6.4 
20 6.6 
20 6.7 
20 6.5 
20 6.5 
20 6.6 
20 6.6 
20 6.7 
20 6.5 
20 6.6 
28 5.9 
28 5.6 
28 5.3 
28 5.2 
28 5.1 
28 5.1 
28 4.9 
28 4.9 
28 4.9 
28 4.9 
28 5.1 
28 4.9 
28 5.1 
28 6.8 
28 4.8 
28 4.7 
28 5.0 
28 4.9 
28 4.8 
28 5.1 
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4/5/96 
4/6/96 
4/7/96 
4/8/96 
4/9/96 
4/10/96 
4/11/96 
4/12/96 
4/13/96 
4/14/96 
4/15/96 
4/16/96 
4/17/96 
4/18/96 
4/19/96 
4/20/96 
4/21/96 
4/22/96 
4/23/96 
4/24/96 
4/25/96 
4/26/96 
4/27/96 
4/28/96 
4/29/96 
4/30/96 
5/1/96 
5/2/96 
5/3/96 
5/4/96 
5/5/96 
5/6/96 
5/7/96 
5/8/96 
5/9/96 

5/10/96 
5/11/96 
5/12/96 
5/13/96 
5/14/96 

8 3.7 
8 3.9 
8 3.9 
8 3.7 
8 3.9 
8 3.8 
8 3.8 
8 3.8 
8 3.9 
8 3.8 
8 3.8 
8 4.0 
8 3.8 
8 3.8 
8 3.9 
8 3.8 
8 3.8 
8 3.7 
8 3.8 
8 3.9 
8 3.9 
8 3.9 
8 3.8 
8 3.9 
8 3.7 
8 3.9 
8 3.9 
8 3.8 
8 3.9 
8 3.9 
8 3.7 
8 3.8 
8 3.9 
8 3.8 
8 3.9 
8 3.8 
8 3.7 
8 3.8 
8 3.9 
8 3.8 
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20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.2 
20 1.1 
20 1.0 
20 1.1 
20 1.1 
20 1.1 
20 1.1 
20 1.2 
20 1.1 
20 1.2 
20 1.2 
20 1.2 
20 1.0 
20 1.2 
20 1.2 
20 1.2 
20 1.1 
20 1.2 
20 1.1 
20 1.2 
20 1.1 
20 1.2 
20 1.2 
20 1.1 
20 1.2 
20 1.2 
20 1.1 
20 1.2 
20 1.0 
20 1.2 
20 1.2 
20 1.0 
20 1.1 
20 1.0 
20 1.2 
20 1.2 

28 4.8 
28 5.0 
28 5.0 
28 4.8 
28 5.1 
28 4.9 
28 4.8 
28 4.9 
28 5.0 
28 4.9 
28 4.9 
28 5.2 
28 4.9 
28 5.0 
28 5.1 
28 5.0 
28 4.8 
28 4.9 
28 5.0 
28 5.1 
28 5.0 
28 5.1 
28 4.9 
28 5.1 
28 4.8 
28 5.1 
28 5.1 
28 4.9 
28 5.1 
28 5.1 
28 4.8 
28 5.0 
28 4.9 
28 5.0 
28 5.1 
28 4.8 
28 4.8 
28 4.8 
28 5.1 
28 5.0 



www.manaraa.com

5/15/96 
5/16/96 
5/17/96 
5/18/96 
5/19/96 
5/20/96 
5/21/96 
5/22/96 
5/23/96 
5/24/96 
5/25/96 
5/26/96 
5/27/96 
5/28/96 
5/29/96 
5/30/96 
5/31/96 
6/1/96 
6/2/96 
6/3/96 
6/4/96 
6/5/96 
6/6/96 
6/7/96 
6/8/96 
6/9/96 
6/10/96 
6/11/96 
6/12/96 
6/13/96 
6/14/96 
6/15/96 
6/16/96 
6/17/96 
6/18/96 
6/19/96 
6/20/96 
6/21/96 
6/22/96 
6/23/96 

8 3.9 
8 3.8 
8 3.7 
8 3.8 
8 3.8 
8 3.9 
8 3.8 
8 3.8 
8 3.9 
8 3.8 
8 3.7 
8 3.8 
8 4.0 
8 3.8 
8 3.8 
8 3.7 
8 3.8 
8 3.9 
8 3.8 
8 3.7 
8 3.8 
8 3.9 
8 3.8 
8 3.8 
8 3.7 
8 3.8 
8 3.8 
8 3.9 
8 3.8 
8 3.8 
8 3.7 
8 3.8 
8 3.6 
8 3.8 
8 3.9 
8 3.8 
8 3.9 
8 3.8 
8 3.8 
8 3.7 
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20 1.1 
20 1.2 
20 1.1 
20 1.0 
20 1.2 
20 1.1 
20 1.2 
20 1.1 
20 1.2 
20 1.2 
20 1.0 
20 1.2 
20 1.1 
20 1.0 
20 1.1 
20 1.2 
20 1.3 
20 1.1 
20 1.1 
20 1.2 
20 1.2 
20 l.l 
20 1.2 
20 1.1 
20 1.2 
20 1.2 
20 1.1 
20 1.1 
20 1.2 
20 1.1 
20 1.1 
20 1.1 
20 1.2 
20 1.1 
20 1.2 
20 1.1 
20 1.2 
20 1.2 
20 1.1 
20 1.2 

28 5.0 
28 5.0 

28 4.8 
28 4.8 
28 5.0 
28 5.0 
28 5.0 
28 4.9 
28 5.1 
28 5.0 
28 4.7 
28 5.0 
28 5.1 
28 4.8 
28 4.9 
28 4.9 
28 5.1 
28 5.0 
28 4.9 
28 4.9 
28 5.0 
28 5.0 
28 5.0 
28 4.9 
28 4.9 
28 5.0 
28 4.9 
28 5.0 
28 5.0 
28 4.9 
28 4.8 
28 4.9 
28 4.8 
28 4.9 
28 5.1 
28 4.9 
28 5.1 
28 5.0 
28 4.9 
28 4.9 
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6/24/96 8 3.8 20 i.o. 28 4.8 

6/25/96 8 3.9 20 1.2 28 5.1 

6/26/96 8 3.8 20 1.1 28 4.9 

6/27/96 8 3.9 20 1.2 28 5.1 

6/28/96 8 3.7 20 1.0 28 4.7 

6/29/96 8 3.9 20 1.2 28 5.1 

6/30/96 8 3.8 20 1.2 28 5.0 

7/1/96 8 3.8 20 1.2 28 5.0 

7/2/96 8 3.7 20 1.1 28 4.8 

7/3/96 8 3.8 20 1.2 28 5.0 

7/4/96 8 3.8 20 1.1 28 4.9 

i/sm 8 3.9 20 1.0 28 4.9 

7/6/96 8 3.8 20 1.2 28 5.0 

7/7/96 8 3.7 20 1.0 28 4.7 

7/8/96 8 3.9 20 1.1 28 5.0 

7/9/96 8 3.8 20 1.2 28 5.0 
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